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Abstract

An analytical/experimental investigation was performed to study the effect of material nonlin-

earities on the response of composite tubes subjected to combined axial and torsional load-

ing. The effect of residual stresses on subsequent mechanical response was included in the

investigation. Experiments were performed on P75/934 graphite/epoxy tubes with a stacking

sequence of [15/0/-I- 10/0/-15"1, using pure torsion and combined axial/torsional loading, in

the presence of residual stresses, the analytical model predicted a reduction In the initial

shear modulus. Experimentally, coupling between axial loading and shear strain was ob-

served in laminated tubes under combined loading. This phenomenon was predicted by the

nonlinear analytical model. The experimentally observed linear limit of the global shear re-

sponse was found to correspond to the analytically predicted first ply failure. Further, the

failure of the tubes was found to be path dependent above a critical load level.
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1.0 Introduction

The use of composite materials in tubular structures has become popular in recent years.

Tubes made from graphite/epoxy have been used in the INTELSAT 6 Communication Satellite,

and they are also under consideration by NASA for use in the truss structure of the space

station1. In addition to spacecraft applications, composite tubes are also being considered for

automobile drive shafts and for robotic arms. For applications such as these where high

stiffness and dimensional stability are critical, a thorough understanding of the response of the

composite tubes subjected to combined thermomechanical loading is imperative.

Polymer-based materials, such as the graphite/epoxy used in these tubes, frequently

exhibit nonlinear constitutive behavior of the reversible or irreversible kind, depending on the

direction of loading. This nonlinearity can have a significant effect on the distribution of

stresses and strains within a tube. For this reason, an analytical tool employing a sufficiently

general nonlinear constitutive theory is desired for predicting the response of composite tubes

subjected to combined mechanical loading. This kind of tool will allow for a more accurate

prediction of the state of stress, strain, and deformation in a composite tube.

Load path dependence is a phenomenon which occurs in nonlinear materials with

dissipative response characteristics. This is defined by the state of stress and strain at a

given state of loading being different for each different path taken to reach that state of load-
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ing. An investigationof this phenomenonat the globallevelwill bepossiblewithanappro-

priatenonlinearanalyticalmodelat theply level.

1.1 Literature Review

Much work has been done in recent years to develop analytical models that predict the

response of anisotropic cylinders. Many different approaches such as shell theory, finite el-

ement analysis, and exact and variational approaches to elasticity theory have been utilized.

Different variations of shell theory have been used to investigate the response of composite

cylinders to torsion, tension (or compression), bending or a combination of these 21. These

analyses have yielded generally good predictions for thin walled cylinders (ro/t > 10) where

through-the-thickness strains can be neglected.

Rizzo and Vicario 9used finite element analysis to predict the response of laminated tubes

consisting of generally anisotropic layers with all coupling terms included. Unlike the shell

theories described previously, this analysis included the effects of gripping the tube. The au-

thors investigated the effects of varying the thickness-to-diameter and length-to-diameter ra-

tios for different orientations of unidirectional tubes. In addition, they investigated the effect

of different gripping arrangements on the subsequent mechanical response.

More recently, elasticity solutions for the composite tube problem have been developed.

Cohen and Hyer TM developed three axisymmetric elasticity solutions to determine residual

stresses in cross-ply tubes: plane stress, plane strain, and generalized plane strain. They

found that the generalized plane strain solution provided the best predictions of the three.

The results from the elasticity solutions were compared with results from classical lamination

theory, and it was found that there are limitations to approximating the response in a tube

with a fiat plate solution.
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Hyer,Cooper,andCohen11subsequently developed a solution to predict the response

due to uniform temperature change based on the principle of complimentary virtual work. The

results from this solution were compared with the elasticity solution developed previously TM

and agreed quite well. This work was restricted to cross-ply tubes.

The elasticity solution for cross-ply tubes was extended by Hyer and Cooper _=to Investi-

gate the problem of a cross-ply composite tube subjected to a circumferential temperature

gradient. Finally, the axisymmetric elasticity solution was extended by Rousseau, Hyer, and

Tompkins _sto predict the response of arbitrary laminated tubes subjected to mechanical loads

as well as uniform temperature changes.

All of the analytical tools described above have employed a linear constitutive theory.

Orgill and Wilson _4have developed an analytical model to approximate the response of tubes

using a nonlinear analysis. A strength of materials approach was used for analyzing tubes

consisting of a single orthotropic layer. Both geometric and material nonlinearities were

considered. The geometric nonlinearities were handled using an incremental procedure. At

each load increment, the finite changes in the tube geometry ( wall thickness, inside diameter,

outside diameter, etc. ) were computed and adjustments made to the cylinder dimensions.

The material nonlinearities that were considered arose from finite changes in the orientation

of the fibers in the layers due to deformations in the tube. The nonlinear constitutive behavior

was determined from experimental methods and approximated by _r_l= E=sl_+ Bs]t + Cs_lwith

similar expressions for or2=and _1=. This type of approximation assumes that there is no

interaction between the stress components and that the stress-strain response is elastic.

Loading path dependence on the response of composite materials has not been so thor-

oughly investigated. Loading path dependence as it relates to the stress state at failure of

composite tubes has been investigated by Choo_". This research was limited to hoop wound

( g0° ) tubes. An extensive experimental program was carried out in which tubes were tested

in combinations of compression and torsion or compression and internal pressure. It was

found that in the fiber fracture mode, the state of failure stress was load path Independent.
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Inthematrixfracture mode the state of failure stress was found to be load path Independent

in some cases.

1.2 Objectives

The objective of the present investigation is to characterize the response of composite

tubes under combined mechanical loading. Towards this end, and analytical/experimental

program will be undertaken. The analytical program entails the development of a model ca-

pable of predicting the response of composite tubes subjected to combined thermomechanical

loading. The analytical model will be developed In a general fashion to Include different types

of mechanical loading such as axial force, torque and internal and external pressures. Ther-

mal effects will also be included to account for residual stresses induced by the fabrication

process. An elasticity approach based on the solution obtained by Rousseau, et al., is will be

used. The present model modifies this solution with the incorporation of a nonlinear

constitutive theory. In addition, an efficient algorithm based on the structural matrix approach

was incorporated for solving the resulting equations. This algorithm is particularly useful for

laminated tubes with a large number of layers.

The predictions of the model will be correlated with the results of an experimental pro-

gram. The experimental program will specifically investigate the response of composite tubes

subjected to combined axial and torsional loading. The tubes used in this investigation are

two inch nominal diameter tubes with a wall thickness of approximately 0.060 inches. They

are fabricated using P75/934 graphite epoxy tape with a stacking sequence of

i'15/0/+ 10/0-151,. This configuration is one under consideration by NASA for use in the

truss structure of the Space Station.
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2.0 Analytical Model

2.1 Introduction

Rousseau, et al., 1_developed an exact planar elasticity solution using a linear constitutive

theory to study thermally induced stresses and deformations in composite tubes. In the

present investigation, the effects of material nonlinearities will be studied. Towards this end,

a general nonlinear constitutive model will be incorporated into the solution obtained by

Rousseau, et al., to permit the usage of any nonlinear constitutive theory that is desired. Once

the nonlinear solution is complete, a suitable nonlinear model will be incorporated.

Due to the nonlinear effects, a modification to the numerical solution technique is desired

to improve the computational efficiency of the analytical model. For this purpose, the

Local/Global Stiffness Matrix formulation will be incorporated. Although thermal effects and

the effects of internal and external pressures will not be included in the experimental portion

of this work, the analytical formulation will include the presence of these types of loading for

more generality. The material properties will be assumed to be temperature independent.

Figure 1 shows the coordinate system and nomenclature used for a laminated tube. The

inside and outside radii of the tube are denoted by ro and r. respectively, where N is the total
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2

V,8

X,U

Figure 1. Coordinate System
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number of layers in the tube. The radii of the interfaces between layers are denoted as rl, r=,

etc. The governing equations to be derived will be developed in cylindrical coordinates; x

represents the axial coordinate, 0 represents the circumferential coordinate, and r represents

the radial coordinate. The displacements In the x, O, and r directions will be represented by

u, v, and w respectively. The ply orientation angle is 4, and the principal material coordinates

are oriented such that the 1-axis corresponds to the fiber direction, the 2-axis is normal to the

fiber but in the lamina surface, and the 3-direction is normal to the lamina surface. The

internal and external pressures are denoted by P, and Po respectively, and the applied axial

and torsional loads are denoted as F=and Tx respectively. _

2.2 Formulation

2.2.1 Field Equations

In the equations that follow, the contracted notation for the stresses and strains in the

principal material coordinates will be used, i.e.

0.1

0.2

0.3

o4

<rs

0.6

o"11

0"22

0.33

: 1"23

.'r13

1'12

and

81

83

_4

85

86

_11

_2

s33

723

Y13

')"12

For the purposes of this derivation, the field equations will be considered for a single

layer and then combined to form a solution for a complete laminated tube. The equations to
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be used are the EquilibriumEquations,CompatibilityEquations,Strain-Displacement

Equations,andConstitutiveEquations.TheEquilibriumEquationsin cylindricalcoordinates

are

O°'r 1 1 a'tr8 aWxr

Tr +T (¢rr-_0)+ F _" +Tx +Rr =0 [2.1a]

aWer 1 a_e aWxe 2
0r + r ae +"_ "-+-T'wer+Re=0 [2.1b]

_Wxr 1 aWxe 0_x 1
Or + r a8 +--_-x +T _xr+Rx=0 [2.1c]

where Rx,R0, and R, are the respective body forces. The Strain-Displacement Equations are

_U
Sx= Tx [2.2a]

SO= T --_- + w [2.2b]

sr = _ [2.2C]

1 ( aw r av
_'er=T\-_--v+ 0r ) [2.2d]

au . aw
}'xr = Tr -t-_ [2.2e]

I au
Yxe= _ + [2.2f]r 8e

The general form of the Compatibility Equations in cylindrical coordinates are

a2=r a2ex a2Yxr
-- + -----0 [2.3a]
ax2 a2r2 axar
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°_e 1 _YxO 1 °'28x 1 O_x 1 O_xr
t- + -0

ax2 r 8x08 r_ ae2 r Or r Ox
[2.3b]

a2_r aSr _(r_xo)+--a/r 2
8e2 r-_- aes_ 8r _, 8r )

0 [2.3c]

82yer )2 82Yxr 82
"-- r 8x08 +2 a---_O'r'(_-Sx)=O [2.3d]

r 8x88

o_ 1 1 a a2
ar axar [2.3e]

a8r a2 a2
2r-_- - _ (rTxe) + 2r _ (rse) [2.3f]

The constitutive equations in the principal material coordinates are:

oi

o2

_r3

o4

Grs

cr6

Cll

C12

C13

0

0

0

C12 C13 0 0 0

C22 C23 0 0 0

C23 C_ 0 0 0

0 0 C44 0 0

o o o c_ o

0 0 0 0 Css

T NL
81 -- 81 -- s1

T NL
s2 -- 82 -- 82

T NL
83- _ -83

s4 -- 84NL

NL
8s-s s

t-'6-- 86NL

[2.4a]

or the inverse

Analytical Model 9



T NL
51 -- ¢1 -- 51

T NL
¢2 -- 52 -- ¢2

T _.;L53 -- 83 --

NL
54--54

NL
55 -- _5

NL
56 -- ¢6

I " 1All A12 A13 0 0 0 : _1 '

IA12 A22 A23 0 0 0 ¢r2
I

--. J A13 A23 A33 0 0 0 0"3
0 0 0 A44 0 0 _4

I
!

I 0 0 0 0 Ass 0 (7s

I 0 0 0 0 0 A66 o"s
L

[2.4b]

where C=jare the initial stiffnesses of the lamina, Au are the initial compliances, sit are the

strains induced by a change in temperature, and the SiNL are the nonlinear strains. This

equation can be transformed to the global cylindrical coordinates of the tube. The result is

as follows:

GX

<T#

<Tr

TOr

Txr

"rx0

Cll C12 C13 0 0

512 C22 C23 0

513 C23 C33

0 0 0

0 0 0

c16 c26 c36

0

0 0

C44 C4s

C4s Css

0 0

_16 5X- 5XT -- CxNL

C26 50 -- 5_ -- ¢;L

C36 5r -- 5T - CrNL

NL
0 Yer -- 70r

// ""0 Yxr -- Yxr

-- // T NL

[2.5a]

where C=jare the transformed initial stiffnesses of the lamina. This equation can be inverted

to give strains in terms of stresses.

T NL
8XNCX_5 X

T NL
50 -- 50 -- 50

T NL
5t -- Cr -- 5r

NL
Yxr -- Yxr

T NL

All A12 A13 0 0 A16 O'X

A12 A22 A'-23 0 0 A26 _r0

A_3_23 A_3 o o A_6 _

0 0 0 A44 A45 0 "rer

0 0 0 A4S Ass 0 Cxr

[2.5b]
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m

where Aij are the transformed initial compliances of the lamina. For the moment, the nonlinear

forms of the constitutive equations will be left in a general form with no specific nonlinear

model used. This will be incorporated later in this chapter.

2.2.2 Boundary and Continuity Conditions

The field equations will be used to determine a general form of the governing equations

for the displacements in the tube. To obtain a specific solution, the boundary conditions will

be applied to the governing equations. On the outside surface of the tube (r = rN),the tractions

will be specified as follows:

Or(X,8, rN) = -- Po [2.6a'l

"rer(X,0, rN) = 0 [2.6b]

"Cxr(X,#, rN) = 0 [2.6c'1

Similarly, the tractions on the inside surface (r = ro)will be specified as

Or(X,8, ro) = - PI [2.7a]

"rer(X,0, ro) = 0 [2.7b]

Txr(X,#, ro) = 0 [2.7c]

For an arbitrary N layered tube, continuity of tractions and displacements at the interfaces

of the layers must be fulfilled. The continuity of tractions can be expressed as

o_k)(x,8, rk) = o_k+l)(x,8, rk) k = 1,2.....N - 1 [2.8a]

lre(kr)(X,0, rk) = _'(k+l)(X,e, rk) k = 1,2.....N - 1 [2.8b]
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",(k+l)_v0, rk) k=1,2 .....N-t• e, rk)= -xr ,-, [2.8c]

and the continuity of displacements are given by

u(k)(x,e, rk) = u(k+l)(x, 8, rk) k = 1,2.....N - 1 [2.9a]

v(k)(x, e, rk) = v(k+1)(X,9, rk) k = 1,2..... N - 1 [2.9b]

w(k)(x, e, rk) = w(k+I)(x, 8, rk) k = 1,2.....N - 1 [2.gc]

where k represents the kt" layer in the tube and ranges from 1 to N-I. Finally, the total axial

force, Fx,will be introduced to the tube as

l
2= _rNo.r(X ' 8, r)rdrd8Fx = /

J0 ro

[2.10]

and the applied torque, T, is

i2_r _r N
Tx---- "rxe(X,8,r)r2drdS. [2.11]

ro

These two equations will be referred to as the "integral force and torque equations."

2.2.3 Assumptions

The applied internal and external pressures are Independent of 8 and the temperature

will be assumed to be spatially uniform. This leads to an axisymmetrlc problem, i.e. the

stresses, strains, and displacements are Independent of 8. For the portion of the tube that is
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sufficientlyfar from the point of application of the axial force, Fx, and the torque, T=, the

stresses and strains will also be independent of the axial coordinate. These assumptions can

be expressed as

aX
-- = 0 [2.12a]a8

aY
-- 0 [2.12b]Ox

where

X = stress, strain, or displacement

Y = stress, or strain

2.3 Solution

2.3.1 Solution for Governing Equation

The governing equations will be derived for an individual layer. Application of boundary

and continuity conditions will yield a system of equations for the radial displacements at the

interfaces of the individual layers. Determination of the interracial radial displacements In

terms of the applied boundary conditions is sumcient for determination of the response of the

tube in terms of global and local parameters.

Incorporating the assumptions of axisymmetry and the uniformity of the stresses and

strains In the axial direction (which ensures that the radial displacement is a function of r

only), the displacements take the form

Analytical Model 13



U = u(x,r) [2.13a]

v = v(x,r) [2.13b]

w= w(r). [2.13c]

Using these assumptions, the field equations can be simplified as follows:

Strain-Displacement Equations:

[2.14a]

[2.14b]

r2.14c]

[2.14d]

F2.14el

av

ax [2.140

Compatibility Equations:

_26 x
_=0

ar2 [2.15a]

1 aSx

r ar [2.15b]
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"_'r[ 1 a "r "]T "E t o [2.15c]

where the three remaining compatibility equations are satisfied identically.

Equilibrium Equations:

aer 1
"E + T (_'r - a0) = 0

[2.16a]

aWer 2
T + T Wer= 0 [2.t6b]

(_'rxr 1

ar +TWxr =0 [2.16c]

where the body forces have been neglected.

These twelve equations ( [2,14], [2.151 and [2.16] ) will now be used to derive the general

expressions for the displacements of a given lamina. Equation [2.15a], in conjunction with

Equation [2.12b], can be integrated to solve for the axial strain, _ directly.

sx(r) = Ar + B

where A and B are constants. Equation [2.15b], however, requires that A=0. Renaming B

as so, we find that the axial strain within the lamina is a constant.

sx(r') = % [2.17]

Using equations [2.14a] and [2.17], the axial displacement u(x,r) can be solved for.

au

I_X = OX = 80

u(x,r) = SoX+ f(r) [2.18]
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Equation [2.15c] can be integrated to obtain

D
,/xe(r) = Cr + "7" [2.19]

as the in-plane lamina shear strain. From equations [2.14f] and [2.19], the tangential dis-

placement v(x,r) can be obtained.

av -Cr+ D
l'xe- ax "T

v(x,r)=(Cr+_Dr/x+g(r) [2.20]

Equations [2.16b] and [2.16c] can be solved for ¢6rand _r=,respectively. This yields

E
=-- [2.21]Txr r

F
"rer= 7 [2.22]

Inserting equation [2.18] into [2.14e], we find that

dr(r)
_xr = dr

From the constitutive relations

-- -- NL
?xr = A4s_rer+ Ass_rxr+ ?xr

substituting equations [2.21] and [2.22] and integrating, we find

A45F - r NL

f(r) = - ---{--- +AssE In r + F1 + jyxrdr
[2.23]
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where F1 is the rigid body translation.

Equation [2.20] can be inserted into equation [2.14d] to obtain

dg(r) g(r) 2D

7#r--- dr T- 7x

But, since the strains are functions of r only, D=0, therefore,

dg(r) g(r) [2.24]
Yer - dr r

Using the constitutive relations

- - NL
70r = A44"r0r -!- A45"rxr4" 70r [2.25]

Equating [2.24] and [2.25], and solving for g(r), we Obtain

g(r) =- 2r A4.sE + Glr+ r _dr [2.26]

where G1 is the rigid body rotation about the x-axis. Substituting these expressions into the

expressions for the displacements, u and v, the resulting expressions for the displacements

are

m NL
u(x,r) = Sox /r _-AssE In r + Yxr dr + F1 [2.27]

J

- IN.A44F A45E+r Yet dr
v(x,r) =yorX 2r T + Glr [2.28]
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where the constant C has been renamed _,o. The physical meaning of),° is the angle of rotation

of the tube per unit length. Transforming 7"=L and 7e",L to the principle material coordinates and

neglecting rigid body motion gives

u(x,r) = %x A45F - Fr + AssEIn r+ (-n84 NL+ msNL)dr [2.29]
J

v(x,r) = _,oXr 2r A4"sE+ _ - dr [2.30]

where

m = cos

n = sin

Consider the remaining equilibrium equation, [2.16a], and the constitutive equations for

ar and or0,namely

0.0 = _21(8x ....sxNL sT) + _22(_,0 _;L T) + _23(Sr_ ,rNL_ sT) + --C26(Yx@-- YxoNL_ Ix@)T

-- NL T NL T _33(i¢r NL sT'r)-I-_31._6"Yx@ NL T,Or = C31(Sx -- I_x -- Sx) + C"32(s0 ¢8 -- Sx) + Sr.... Yxe -- Yxe)

Replacing the total strains, sx,s0,,-,, and y,_, with their respective strain displacement ex-

pressions, and transforming the thermal and nonlinear strains into the principal material co-

ordinates we obtain

-- au -- w -- dw --- av
°e = c12 "_- + c22 T + _23 _ + c2s "_- -

n2C , NL m2Cl2(¢1NL -I- ¢T) JrI1_,¢1 + sT) + 2mnC66,N#]
[2.31]
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-- au -- w -- dw Ov
_r= C_3-_-+ C23_- + C__ + _ _-- C,3(,_L+ ,_) [2.32]

where the repeated subscript, i, denotes a summation over the range i = 1,2,3. At this point,

it must be noted that two separate cases must be considered. These are the transversely

isotropic lamina, where C1== C1=,Ca = C., and C--_= 2(Ca - C'=s),and the monoclinic lamina.

When the constitutive relations are substituted into the equilibrium equation we find, for

transversely isotropic layers:

r2 d2w r dw _ w = CI3 dsNL
"-_-2 + dr C22 dr

r C22

and for monoclinic layers

+

n2 Cll _ m 2 CI_..._2 _/' NL . T_, C66 "'1
2C2--=-- C22 )'j_'sl "1-eI )- 2mn--=--C22ks J

[2.33a]

r2 d2w + K16or+ K2,/or2 + r2r dw _ C22 w = CI3 dslNL

dr 2 dr C33 C--33 dr

r[ (n2CI1 + m2CI2-Cl3)(-- _NL+_T)+2mnC6@NL]C33

[2.33b]

where

K1 -
C33

C26 -- 2C3s

K2 = C33

Because the distribution of nonlinear strains through the thickness of the lamina is not known

a priori, we will assume that they can be approximated by a fifth order polynomial, i.e.

,INL= a I + blr + clr2 + dlr3 + elr 4 + fir s
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Forthe momentwewill assumethatthe constantsaa,b_,c_,d_,e_,andf_ are known constants.

The reason for this assumption will become apparent later. With this assumption we can solve

the differential equations for the radial displacement in terms of these constants

ai, bl. c_,d,, ej, and f_. For transversely isotropic layers

r2_d2w + r dw _w=Qlr+Q2r2+Q3r3+Q4r4+Q5rS+Qsr8
dr2 dr

[2.34a]

where

Q1 = _ (al + sT) -- 2mn _'_ a6
_22 C22

Fi Ci3 '_.
Q2=_2m n C6_s b6 + ...__._+

c22 )°'

ci3 + FI _ 2mn C66Q3 = - cl C6
C22 ) C22

Q4 (3Ci3+FI / C66= = d I - 2mn ------- d6
C22 C22

CI3 + FI / C66Q5 = - eI - 2mn --=-- d6
C22 C22

Ci3 + Fi / CssQ6 = = fl -- 2mn _-=--- d6
C22 C22

FI = Ci3 - n2C11- m2Ci2

For the monoclinic layers, the differential equation becomes

m

r2 --d2w + r dw -C22 w = Tlr + T2 r2 + T3r3 + T4 r4 + Tsrs + Tsr6
dr2 dr C33

1"2.34b]
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where

FI(_T + a,) 2ran C66 a6
T1 = Kl_o + C33 C33

T2 = K2yo + (Ct3--+ FI) bt- 2mn C66 bs
C33 C33

T3 = (2Cl3 + FI) cl_2mn Cs6 Cs

T4 = (3CI3 + FI) dI -2mn C6_s ds

Ts = (4Cl3 + Fi)
C33 e I - 2mn CssC33e8

T6 = (5CI3 + FI) eI - 2mn Css es
C33 C_

These equations can now be easily solved, The result for transversely isotropic layers is

A2
w(r) = Air +--F- + Plrln r+ P2r2+ P3r3+ p4r4+ psrS+ Psrs 12.35al

where A1 and A=are arbitrary constants and

PI -- 2--_22 ['Fl(a, + sT) - 2mnCssas"l

1
P2 = _ [(FI -t-Di3)bI - 2mnC66bs"J

_22

1
P3= _ I'(FI -t-2Cl3)cI - 2mnCsscs]

8C22
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1
P4 = _ I'(FI + 3Ci3)dl - 2mnCssds'l

15C22

P5 = 1_ [(FI + 4Ct3)e I _ 2mnC66e6 ]
24C22

P6 = _ [(FI + 5Ci3)fl - 2mnCssfs]

For monoclinic layers, the result is

w(r) = A1 r4 + A2r -'t + G1r + G2r 2 + G3 r3 + G4 r4 + Gsr s + G6r 6 [2.35b]

where

(512 -- 513)s o + Fl(s T + al) - 2mnCe6a 6
G 1 =

C33 -- 522

(C26 - 2C3s)_ o + (Ci3 + Fi)b I - 2mnC66b 6

G2= 4c-_3- 522

(F i + 2CI3)c i -- 2mnC66c 6

G 3 = 9533. 522

G 4 =
(F i + 3Ct3)d i - 2mnC_d s

w

16C33 -- C22

G 5 =
(F i + 4Ci3)d i - 2mnC66e 6

9533- 522

(FI + 5Ci3)f I - 2mnCssfs

G6- 18___- 522
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Equations [2.29], [2.30], [2.35a], and [2.35b] are the general solutions for the displacements of

cylindrical lamina. The solution to a multilayered cylinder can now be found using the solution

for the single lamina.

2.3.2 Application of Boundary Conditions

To fully solve a general N layered tube, the unknown constants in the solutions for the

displacements must be solved. This gives 6 unknowns for each layer, E, F, _o,_o, A1, and A=.

Therefore there are a total of 6N unknowns. These must be determined from the boundary

and continuity conditions. Restating these conditions:

_l)(ro) = -PI °_N)(rN) = -Po [2.36a,b]

lr_l)(ro) --- 0 lr(Nr)(rN) = 0 [2.37a,b]

¢_)(ro)= 0 _(N)'r _= 0 [2.38a,b]xr _, N/

_rr(k)(rk)= _rr(k+l)(rk) k = 1,2 ..... N - 1 [2.39]

"r_r)(rk)= Ir_+l)(rk) k = 1,2 ..... N- 1 [2.40]

•_)(rk) = _(,+1),.,_xr _,'k/ k = 1,2 ..... N - 1 [2.41]

U(k)(rk) = u(k+l)(rk) k = 1,2 ..... N - 1 [2.42]

v(k)(rk) = v(k+l)(rk) k = 1,2 ..... N - 1 [2.43]

w(k)(rk) = w(k+l)(rk) k = 1,2 ..... N - 1 [2.44]

Applying the shear stress-free boundary conditions, [2.37a,b] and [2.38a,b], we find that
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E(1)=E(N)..-_0

F(1)=F(N)= 0

from Equations [2.21] and [2.22]. Then from the continuity of shear tractions at the interfaces,

[2.40] and [2.41], we find

E(k) = F(k) = 0 k = 2,3 ..... N - 1

Therefore the _'0, and -c,, shear stresses, and, hence, _r4 and _rs, are zero through the thickness

of the tube. The equations for the u and v displacements for the kth layer reduce to

u(k)(x,r) = ,(ok)X+ f(--n(k)'NL + m(k),_L)dr [2.45]

v(k)(x,r) = 7(ok)rx+ rf (m(k)s4NL_1-n(k)sNL) dr [2.46]

In a later section, it will shown that sN, and sN" are zero throughout the tube due to the fact that

_4 and (_6are zero. Therefore

u(k)(x, r) = 8(ok)x [2.47]

v(k)(x,r)=  (ok)rx [2.48]

Applying the continuity of displacements at the Interfaces of the layers to the u and v compo-

nents

s(ok)X= s(ok+l)x
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y(oV)rkx = _,(l<+l)rl<x

Therefore the values of Soand ?o are identical in every layer. This means that the axial strain

and the rotation per unit length are constant through the thickness of the tube, so

_(ok) = so

Then

u(k)(x,r) = 6oX 1"2.49"1

v(k)(x,r)= :,orx [2.50"1

The remaining unknown constants are A_, A_),_o, and y,, or 2N+2 constants. The remaining

boundary conditions to be satisfied are equations [2.36a,b], [2.39], and [2.44]. These give 2N

equations so two additional conditions are required. These are the integral force and torque

equations

f2_ fr N

Fx--J, J, _x(r)rdrd0
O re

r2¢ rrN

Tx=/ / lrx°(r)r2drd8
•'0 "ro _

or, written in terms of the stresses in the individual layers
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N

Fx = 2= cr_k)(r)rdr

k=l k-1

[2.51]

N

ZfT_= 2_ _(_(r)r2dr

k=l rk-1

There are now a sufficient number of boundary conditions for a solution to be found.

[2.52]

2.3.3 Local / Global Stiffness Matrix Formulation

Rather than solving the 2N +2 equations by substituting the expression for the stresses

and displacements into equations [2.36a,b], [2.39], [2.44], [2.51], and [2.52] and solving the

resulting equations for AI k),A_k), So,and 70, we will manipulate these equations with the objec-

tive of reducing the actual number of equations to be solved le. For simplicity define

w + = w(k)(rk) W_" = w(k)(rk_l)

a_k)+ = (_k)(rk) a_k)- _(k), r ,= r I.k--1)'

Writing the expression for w + and wE for transversely isotropic layers

A2k P_r k In r k -F k 2 k 3 k S k 5 k 6
W+ = A_rk + -_k + P2rk + P3rk + P4rk + PSrk + PBrk [2.53a]

A k
k 3 pkr4 pkr5 pkr6 [2.54a]wk- = Alkrk_l + _ + P_rk_ 1 In rk_ 1 + P2k__l + P3rk_l + r k-I + 5 k--1 + 6 k--,

k--1
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andfor monocliniclayers

__A2k Glkrk G2k_+G3kr_+ k4 G5krkrs GsrkkS
W+ = Alk_k + r_k + + G4rk + +

[2.53b]

k

_kl 3 k--I + G4rk-I + S k-1 + _6 k-1
[2.54b]

Solving these equations for A_ and A|, we find

RK+ Rk"

AIk = rk-I rk
det k

A_= rkRk'-- R+rk-I
det k

where

rk rk_l
det k = rk_l rk

k5 k6
R+ = w+ - pkrk In rl<- pkrl_-- p3kr3 -- pkr4 -- P_rk - _Perk

R_" Wk"- P_rk_ 1 In rk_ 1 p2k__1 '_kr3 -- pkr,4, k S kS= -- -- r3 k--1 4 k--1 -- Psrk-1 -- P6rk-I

for transversely isotropic layers and

AIk -- R +r_._k- R;r k Xw
detk

4- k

A2k -- rl_'Rk--Rk _-I
detk

where
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R+ w+_Glkrk k2 k3 k4 k5 k6= - G2r k - G3r k - G4r k - Gsr k - G6r k

Rk=w k-Glkrk_l-Gkr 2 _Gkr 3 _Gkr_ --Gkr, s. _Gkr 62 k-1 3 k-I 4 k--I 5 k--1 6 k--1

for monoclinic layers. Expressing the normal radial stress in terms of the displacements using

equations [2.14], [2.32], [2.49], and [2.50], we obtain

k --k _ dWk(r) t__k6_or ,,,k NL. ,,k NL. ,,k NL. _k NL, [2.55]O'r(r) = C13_OJr ck 3 Jr ck 3 dr - I r113_1 -t- n23_2 -t- r163_6 -I- _33_.3 )

where

Hli = Cllm 2 Jr C2tn 2 Jr 2mnC61

H21= Clln 2 + C2im2 -- 2mnC61

H6i = mn(-C2i- C1,) + ( m2 - n2)C6,

If the expressions for A_ and A=k are substituted into the expressions for the radial displace-

ment, w, which in turn is substituted into [2.55], we obtain an expression for the radial stress

in the kt" layer in terms the radial displacements at the inner and outer radii of the layer. From

this expression, we can easily write expressions for the interfacial tractions for each layer in

terms of w;, w_, 6°, and '/0. In matrix form, these are

Wk

K,k= +

'/0

[2.56]
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where F_Land F_L contain all of the terms that contain the nonlinear constants

a,, b,, c=,d, e=,and f,, and F_ and F_ contain all of the terms that contain _T.KI is called the local

stiffness matrix for a given layer, k. The expressions for these terms are given in Appendix

A.

2.3.4 Assembly of Global Stiffness Matrix

The local stiffness matrices can be assembled into a global stiffness matrix by writing the

traction equations at the inside surface, the interfaces between each layer, and the outside

surface. For the inside surface

1- K_lWo + + K14Yo --- or =P,= K_=w,K13_-o+' F_'_-FI-

For the _" interface

-- K2@o + K24Yo- rNL -- r T

_k+l)-- = _.k+l, . -k+l ,.k+l ,.k+l =(k+l)-_ F_+I)--n, ll w k't-1_12 Wk+ 1+_13 6o"1"r_14 Yo--rNL

For the outside surface

= N N+ FN+o."+- Po=K="_w._,+K;=w.+K="_.o+K=._o-F._-

The three resulting forms of the traction equations are:

for the inside surface.

K_4yo= P,+ F_r-+ F_'_ 1"2.57:]

for the kthinterface
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,.k+l. Kk+lw (Kks + r_13 )_oKklWk_l + (Kk2 -t- r_11 )w k -t- 12 k+l + ,.k+l.

k+l k+ k+ ¢(k+1 )--%
Jr (Kk4 Jr K14 )_o = (FT Jr F_k+l)-) Jr (FNL Jr "NL )

[2.58]

and for the outside surface

N = F_.+ N+K_lw._lJrK;2w,JrK_3.oJrK2,,o- PoJr JrF,L [2.59]

where

w k = w + = wk+ 1

ark+ _ _r_k+l)- = 0

In addition to these equations the integral force and torque equations must be Included.

In general, each of these equations will have coefficients of all of the interfacial displacements,

Wk ( k=0,1 ..... N ), So, and },o as well as pseudo force terms due to the nonlinearities and a

"force" due to a change in temperature. The integral force equation will be of the form

N

_-_kWk + _N+lSo + d)N+27o = Fx + FFL + F;
k=O

[2.60]

and the integral torque equation will be

N

k=O

For example, consider an arbitrary 3 layer tube. Assembly of the global stiffness matrix

yields:
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K_I K_2

0 K21

0 0

% ¢)I

_0 _1

o o K_ K_
K_ 0 (K_+K_3)(K_4+K_)

(K_+K_)K_ (K_+ K_)(K_+K_,_)

(D2 (Z)3 (_)N.,I-1 I_)N-I-2

_P2 _3 _/N+I _N+2

Wo

Wl

W2

W3

8o

i Yo
L

PI

0

0

-Po

Fx

Tx

+

FIT-
F1T++F_-
F_-++F_'-

FF
F_

F_
1+ F2LFN L +

F2+ ± =3-
NL T rNL

+
3+

FNL

F_L

FTL

[2.62]

or in short-hand notation

[M]{W} = {F + FNL + FT} [2.63]

where

[M] = global stiffness matrix

{W}={W 0 W1 W2...W N 80 yo}T

{F} = { Pi 0 ... 0 -Po Fx Tx }T

{FNL}= global nonlinear force vector

{FT} = global force vector due to temperature changes
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This system of equations consists of N+3 equations that must be solved for the radial dis-

placements at the interfaces, wk, the axial strain, 50, and the rotation per unit length, yo. For

a large number of layers, the local/global stiffness matrix scheme offers a nearly 50% re-

duction in the number of equations to be solved.

2.4 Endochronic Theory

The Endochronic Theory is a nonlinear constitutive model based on irreversible

thermodynamics. It uses the concept of internal variables and is centered around a defor-

mation scale ( or intrinsic time scale ) which is a material property. The deformation scale

can either be dependent or independent of time. For this investigation, it will be assumed that

the deformation scale is independent of time. This theory was developed by Valanis 17 le to

describe such phenomena as cross-hardening in tension due to torsion and formation of

hysteresis loops during loading and unloading cycles in isotropic materials. This theory was

later extended to include anisotropic materials by Pindera and Herakovich _8. A set of

constitutive relations to model the in-plane behavior of transversely isotropic materials was

obtained as a special case from the three dimensional formulation in order to correlate the

theory with experimental data. The three dimensional relations developed by Pindera and

Herakovich were subsequently incorporated into a three dimensional finite element model by

Mathison, et al., 20to examine the behavior of compression-loaded laminates with a hole.

The equations used by Mathison, et al., are ( without change ):

51= Alj<7 j + Bll Ich Inl [2.64a]
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Io [ a°2r.2 = A2jo j -t- B_2(Z - Z') n. _ dz' [2.64b]

s3 = A3jo j + B_2(Z - Z') n= dz' [2.64c]

1 B_2(Z-Z'_ n2 0o4 dz'
s4 = A4j oj "F-_- " az'

[2.64d]

s5 ----A5je j 4" B_6(Z - z '_ns O°s dz'
' aZ'

[2.64e]

'oz - C_os_'6= A6j°j -I- B_6(z - z'¥, ,a_Oz, dz' [2.64f]

where Bll, B_=,Bh, nt, n=, and ns are nonlinear material constants, AIj are initial compliances

of the material, z' is the variable of integration and

dz = .,JSijdoldO"j

and Stj is a fourth order positive definite tensor whose components are material properties.

B_=and B_ are constants pertaining to the dissipative type nonlinear response. B. , on the

other hand, describes the reversible nonlinear behavior in the fiber direction.
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Recallingfrom the previous section, it was found that .r.,---"tar = 0 throughout the thick-

ness of the tube. Transforming these stresses to the principal material coordinates system,

it can be shown that _4 = 0 and crs -- 0 throughout the thickness of the tube also. Extracting the

nonlinear portion of the strain from equations [2.64d] and [2.64e]

Lz

NL 1 a_4
84 = _ B_2(Z -- Z') n'--_ dz'

Lz
NL B_6(z a_5¢5 = - z')ne-_- dz'

Since <74= cr5= 0,

aa 4 aa 5
-- =0

_Z' aZr

therefore

NL NL
¢4 = ¢5 = 0

which is the result that was used in the previous section. Also, because _q = <7_= 0, the elastic

portion of the strains in Equations [2.64d] and [2.64e] are zero, therefore, the total strains,

¢4 and ¢, are zero. Restating the endochronic constitutive equations

¢1 = Alj°'J Jr Bll I_11 nl [2.65a]

Z-O . ,.n= 8cr2¢2 = A2jcrj + t522(Z -- z ) _ dz' [2.65b]
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,_0z aa3s3 = A3ja j + B_2(Z - z') n' _ dz' [2.6Sc]

'4 = 0 [2.65d]

's = 0 [2.65e]

z'6 = A6jej + B_e(Z - z') ne dz' [2.65f]

Because the deformation scale, z, is a function of the loading history, which is, in general,

complex, equations [2.65a-f] cannot be integrated exactly. Therefore, for these equations to

be used in an numerical model, they must be integrated incrementally. The incremental form

of the expression for ,e was derived by Mathison,et al., =° as follows:

N 0Go B_6 N

,6 = 0a s F (ns+ 1) _'S6k[(Zn--Zk-1)n$+l--(Zn--zk)nS+l] r2.66]
k=l

where

a°6 I Act6
$6 k I k = "Azk

k=1,2 ..... N

N

ZN = _-'_jA,Zk
k=1
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_z k = JSijh-_rik6aJ < ( k not summed )

N = number of increments

The incremental forms for s2 and 53 are similar to equation [2.66].

2.5 Failure

For a complete investigation of the effect of combined thermomechanical loading on the

global response of composite tubes, the prediction of failure within the tube using an existing

failure criteria is desired. Three failure theories were evaluated for incorporation into the

analytical model: Maximum Stress Theory, Tsai-Hill Theory, and Tsai-Wu Theory. Because

consideration for interaction between the different stress components and for the difference

in magnitudes of ultimate stresses in tension and compression are desired, the Tsai-Wu The-

ory was selected for use in the analytical model.

According to Tsai and Wu tl, failure will occur when

Fia I + FijGioj = 1 i,j = 1,2,3 ..... 6

where contracted notation has been used. F=and Fij are second and fourth order tensors re-

spectively that are functions of the ultimate strengths of the material:

1 1

F1 =-_-T + XC

1 1

F4=Fs=F6=0
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1
F11= XTXc

1
F22= F33= YTYc

1
Fee- S2

F44= Fss=0

where XT and Xc are the tensile and compressive strengths in the fiber direction, YT and Yc

are the tensile and compressive strengths in the transverse direction, and S is the in-plane

shear strength, For the purpose of this investigation, the coupling terms, FI=,F., and F., will

be neglected. This failure theory employs the stresses at a given point in the tube to predict

failure, therefore, the prediction of failure using this theory In the analysis of tubes will only

yield individual ply failures rather that the total failure of the tube.

2.6 Numerical Procedure

2.6.1 Approximation of _NL_r_

As stated in an earlier section, the nonlinear strains, 8pL(r), are approximated by a fil_h

order polynomial,

siNE(r)= a t + blr + clr2 +dl r3 + elr4 + fir s
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in each layer. The unknown coefficients will be evaluated using the Least Squares Method

(see Appendix B). This method requires that strains at six points within each layer must be

known. Therefore each layer must be divided up into five or more sublayers of the same fiber

orientation. This facilitates the calculation of s_L(r) at each of the interfaces of the sublayers

and, hence, permits the calculations of the unknown coefficients of the polynomial.

2.6.2 Iterative Technique

Many techniques for solving a system of nonlinear equations are currently in use includ-

ing incremental procedures, iterative procedures, and step-iterative or mixed procedures 20.

For the solution of this problem, a step-iterative scheme was chosen. This scheme is simply

a combination of an incremental procedure and a functional iterative procedure.

The functional iterative technique starts with an initial estimate for the displacements,

{W}, and performs the following iteration procedure:

EM-J{W (r)} = {F} + {F T} + {FNL({w(r-1)})}

where r represents the iteration number. The iteration is continued until the solution of two

successive iterations satisfies the convergence criteria.

The incremental procedure breaks the total load applied into finite increments. For each

load increment, the functional iteration technique is performed to arrive at a solution for each

load increment.

The global stiffness matrix, [M-J, contains only linear terms. Therefore it need only be

decomposed once for the entire loading cycle. All of the nonlinear terms are contained in the

pseudo force vector {F,_}, therefore only the right-hand side of the equation must be changed

from one iteration to the next.

A technique called scaled partial pivoting is used to solve the system of equations at each

iteration. This technique is suitable for the case where the same stiffness matrix is used with
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many force vectors as is the case in this situation. This procedure utilizes Gaussian elimi-

nation in which rows are interchanged and scaled in order to pivot from a position that will

cause the least numerical roundoff errors. The elimination procedure is performed once on

the global stiffness matrix, [MI. The row Interchanges are stored, and at each iteration, they

can be performed on the force vector. A solution for the displacements is then obtained from

a back substitution procedure. This technique offers a significant savings in computing time

over inversion of the stiffness matrix and subsequent multiplication with the force vector at

each iteration 2z.

The procedure that is followed in the step-iterative scheme is the constant stress formu-

lation. For this formulation, the iterations are performed at essentially a constant stress level

and the corresponding strains and displacements are determined for each load step. The it-

erative procedure followed for the constant stress formulation is as follows:

1. The system of equations is solved for w, So,and _,=.

2. Convergence of solution is checked.

3. The global strains, sx, se, s,, and 7_ are calculated from the radial displacements,

Soand 7o using equations [2.14a], [2.14b], [2.14c], and [2.14f].

o The global strains are transformed into the principal material coordinates, and the stress

in the principal material coordinates are determined from the constitutive equations,

Equation [2.4a], using the nonlinear strains, _L(r), from the previous iteration.

5. The stress increments are determined from the difference of the current value of stress

and the converged value from the previous iteration.

6. The nonlinear strains are calculated from the stress increments.

7. The nonlinear strains in each layer are approximated by fifth order polynomial.
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8. The pseudo force vector, {FNL}, iS calculated from the nonlinear strains

This sequence is repeated until convergence of the solution is attained. A flow chart for

the computer program is shown in Figure 2

2.7 Program Verification

In addition to performing the nonlinear tube analysis, the program developed is also ca-

pable of linear analysis. To verify the results obtained using the local/global stiffness formu-

lation, the results obtained from the linear portion of the program developed for this study

were compared with results obtained from the computer program developed by Rousseau,

et al _3.

An arbitrary unsymmetric, unbalanced laminate with a stacking sequence of

1-10/45/-30/60/0/-15/5/-75/90/50/-60130/0/-25/82"1T was selected. The material used for

this analysis was AS4/3502 graphite/epoxy (using the material properties given by Mathison,

et al.,20). A general loading including all types of loading was chosen. The applied loads are:

Fx = 10000 lb.

Tx = 1500 in-lb.

PI = 225 psi

Po = 100 psi

AT = -100°F

A comparison of the distribution of stresses through the thickness is shown in Figure 3

through Figure 6. There are no differences in the results from the two models.

To verify the nonlinear portion of the program, a pure shear state can be used as a test

case
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Input Problem Data

No

J Calculate Global Stiffness ]Matrix and Force Vectors

--1 Solve for w, _o, y° J

l
j Check for convergence of solution J

i
I Calculate total global strains J

I 1Transform strains to
principal material coordinates

i
i ICalculate stresses in

principal material coordinates

1 Calculate stresses increments !

J Calculate irreversiblestrains from &a

Calculate pseudo forces |
from Irreversible strains J

i
J Displacement convergence?

_ Yes

t ' Increment Load vector J

i
I _top 1

i
I _n_ 1

Figure 2. Flow chart for Computer Program
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a i = 0, i = 1,2,3,4,5.

For the pure shear state, Equation [2.64f] can be integrated exactly

zs6 = A6jo"j + B66(Z - Z') ne dz'

where

dz = _/SljdCrld_ j

= S_66 do"6
[2.67]

therefore

a_ 6 dcr6

az dz

1

s,/gE

(_0" 6

Substituting for--_- z in Equation [2.64f]

_0 z B_;6(Z -- z,)ns_6 = A6j°'j +
dz'

s6 = A6j(7j +
B_6zne +1

s_/_86(n6+ 1)
[2.68]

Integrating Equation [2.67], we have z = S_-u_ s. Substituting for z into Equation [2.68]
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tl 8

B 6(S66)To;e+l I;2.60;1
_6 = A6J°J 4" _,'n6 -t- 1)

The shear strains can now be determined for any shear stress.

A state of pure shear can be attained in a tube by applying pure torsion to a tube in which

all of the layers are aligned with the fibers in the axial direction ( 0 ° ). Comparing the analysis

of a 0° tube in pure torsion with results from Equation [2.69], the analytical model can be

verified for the nonlinear analysis of tubes. These results are shown in Figure 7.
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3.0 Experimental Procedure

3.1 Introduction

The experimental program consists of a series of fiat coupon tests followed by biaxial

tests on composite tubes. The fiat coupon tests are comprised of a set of off-axis tension and

compression tests and Iosipescu shear tests on coupons cut from a fiat, 12 ply unidirectional

panel made from P75/934 graphite/epoxy. The results of these tests will be used to generate

material parameters that will subsequently be used in the analytical model to predict the re-

sponse of the composite tubes. The laminated tubes will then be tested in combined axial and

torsional loading, and the results will be compared with predictions of the model. The extent

of the test program on the laminated tubes was limited because fewer tubes were available

than initially planned for. A test fixture was also developed for the application of combined

loading. The description of the design of the test fixture will be included in this chapter.
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3.2 Test Plan

3.2.1 Material Characterization

The test matrix for the tests performed on the fiat coupons is shown in Table 1. The

material used in this study will be assumed to be transversely isotropic so there are five

elastic properties to be determined: Ell, E2=,vl=, v2s,and GI=. The off-axis tension tests were

performed to determine the in-plane material properties in tension and shear. Fiber orien-

tations of 0° and 90° were used to determine the axial and transverse Young's moduli as well

as the Poisson's ratio, v_=. Fiber orientations of 10° and 45° were used to determine the axial

shear modulus, GI_. The 45° orientation provides the most accurate prediction of the shear

modulus while the 10° orientation gives a measure of the effect of the interaction of the

_r_and a= stress components on the shear response of the material. These tests were also

used to determine the ultimate strengths of the material in tension.

The off-axis compression tests were performed to characterize the in-plane material re-

sponse in compression. Three fiber orientations were tested: 0°, 45°, and 90°. The ultimate

strengths in compression were also determined.

The Iosipescu tests were performed to characterize the in-plane shear response of the

material under nearly pure shear conditions. The results from these tests will be compared

with the 10° and 45° off-axis tests. Fiber orientations of 0° and 90° were used for the Iosipescu

tests.

To supplement the tests performed on the flat coupons, tests were performed on

unidirectional tubes. The test matrix for these tubes is shown in Table 2. Tubes with fiber

orientations of 0°, 45°, and 90° were tested as a comparison for the fiat panel tests.
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Tablet. FlatCoupon"restMatrix

Test
Type

Tension

Compression

Iosipescu

Fiber
Orientation

0 o

10°
45°
90°

0 o

45°
g0o

0 o

90°

Number of
Specimens

3
3
3
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Table 2. Unidirectional Tube Test Matrix.

Tube No.

0-01
0-02
0-03

45-01
45-02
45-03

90-01
90-02
90-03

Type of Loading

Tension

Torsion

Torsion
t

Tension

Torsion, Tension ***
Torsion, Compression ***

* Received in damaged condition

** Failed in test fixture prior to testing

*** Two tests accomplished by performing first test well below failure
load then performing second test.
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3.2.2 Laminated Tube Tests

The laminated tube tests were performed on seven tubes with stacking sequences of

E15/0/-I- 10/0/- 15"]=. Four of the seven tubes had been thermally cycled between -150°F and

-I- 150°F for 3000 cycles prior to testing while three had not. The response to pure axial loading

( tension or compression ) was found to be linear to failure in preliminary tests performed on

laminated tubes. The pure torsion response, on the other hand, was nonlinear. Because the

nonlinear effects are of primary interest, the emphasis on the tests on the laminated tubes

will be in pure torsion and torsion dominated blaxial loading. The seven tubes were tested

using four different loading types:

Type I Loading Monotonic negative torsion to failure

Type II Loading Cyclic positive to negative torsion. The magnitude of torque is increased

with each successive cycle.

Type III Loading Combined Loading - tension/positive torsion. The tension and torque are

increased proportionally to a specified magnitude then unloaded propor-

tionally. Pure torsion is applied to the same magnitude then pure tension

is applied, Finally the tube in unloaded proportionally, The ratio of torque

to tension is 1.73:1. This procedure is repeated with increasing magni-

tudes of loads.

Type IV Loading Combined Loading - compression/negative torsion. The same loading

sequence as Type III is used except it is loaded in compression and neg-

ative torsion rather that tension and positive torsion. This procedure is

also repeated with increasing magnitudes of loads.
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Figure8 showsthe loadingsequences used for each type. The test matrix for the laminated

tubes is shown in Table 3. Table 4 through Table 6 show the magnitudes of the loads applied

for Types II, III and IV. The designation for the tubes will be in the form LMXYY where

• LM defines the stacking sequence as r15/0/-i- 10/0/-15] s

• X = C represents a thermally cycled tube

• X = B represents a baseline tube (no thermal cycling)

YY is a sequential numbering of the tubes

3.3 Material

The material system chosen for this study consists of a P75 graphite fiber made by Amoco

preimpregnated in a matrix of Fiberite 934 epoxy. The P75 fiber is a high modulus fiber, and

the 934 epoxy is a standard epoxy used in many aerospace applications. Prior to this study,

only some preliminary material properties for the linear region were available so the material

system was characterized for the in-plane material properties in both the linear and nonlinear

regions before conducting the biaxial tests on the laminated tubes.

3.3.1_ Panel Configuration

For the purpose of characterizing the material, fiat panels were fabricated using a 12 ply

unidirectional layup of the P75/934 graphite/epoxy. The 12 ply configuration was chosen to
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Torque

Axial Force

Torque

(I)

(3)

(2)

(4)

Axial Force

Type I Type II

Torque J.__.

(3)1/(, )

(5)

T- 1.73

Axial Force

Type lU

Torque

T- 1.73

151

(_)_ 131
(4)

Type IV

Axial Force

Figure 8. Load Sequences
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Table 3. Laminated Tube Test Matrix

Tube

LMB01
LMB02
LMB04
LMC05
LMC06
LMC07
LMC08

Condition

Baseline
Baseline
Baseline

Thermally Cycled
Thermally Cycled
Thermally Cycled
Thermally Cycled

Load Type

IV
II
II
II
III
IV
I
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Table4. LoadMagnitudes- Type II Loading

Tube

LMB02

LMB04

LMC05

Cycle #

1
2
3

Torque (in-lb)

1500
2500
3500
4500

2500
35OO

1500
2500
3500
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Table5. LoadMagnitudes.TypeIIILoading

Tube

LMC06

Cycle #

1
2
3
4
5
6
7
8
9
10
11
12
13

Axial (Ib)

640
815
965
1105
1250
1400
1535
1680
1825
1970
2113
2402
2546

Torque (in-lb)

1160
1410
1660
1910
2160
2410
2660
2910
3160
3410
3660
4160
4410
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Table6. LoadMagnitudes-TypeIVLoading

Tube

LMB01

LMC07

Cycle #

1
2
3

Axial (Ib)

-640
-815
-965

Torque (in-lb)

-1160
-1410
-1660

4
5
6
7

-1105
-1250
-1400
-1535

-640
-815
-965

-1105
-1250
-1400
-1535
-1680

-1910
-2160
-2410
-2660

-1160
-1410
-1660
-1910
-2160
-2410
-2660
-2910
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match the thickness of the tubes. The average thickness for the panels was measured to be

0.065".

Micrographs of the panel's cross section were taken to measure the volume fraction of

the panels as well as to examine the distribution of the fibers in the matrix. A micrograph is

shown in Figure 9. The fibers are evenly distributed through the thickness, and the ply

boundaries are not distinguishable except for a few locations. The volume fraction of the

panels were determined from the micrographs using an optical technique _3. This technique

yielded 65% for the fiber volume fraction.

3.3.2 Tube Configuration

The tubes used in this study are those that have been proposed by NASA for the truss

structure of the Space Station. These tubes have been constructed from P75/934

graphite/epoxy with a stacking sequence of 1"15/0/-t- 10/0/-151,. The nominal inside diameter

of the tubes is two inches with a twelve ply construction giving a wall thickness of approxi-

mately 0.060". For the purposes of this test program the tubes have been cut to a length of

ten inches. In addition to the 1"15/0/-t- 10/0/-151= configuration, which will hereafter be re-

ferred to as the "laminated tubes", unidirectional tubes were also constructed in fiber orien-

tations of 0°, 45 °, and 90 ° as mentioned earlier.

The tubes that were employed in this experimental program were obtained from two

sources: Boeing Aerospace and Morton Thiokol. The tubes constructed by Boeing were pri-

marily used for preliminary testing to evaluate the newly developed test fixture to be dis-

cussed in Section 3.4.3.4, while the tubes made by Morton Thiokol were used to obtain the

results presented in Section 4.3. The manufacturing techniques employed by the two suppli-

ers were somewhat different. The tubes made by Boeing Aerospace were fabricated using a

unidirectional tape layup on a male mandrel. In addition, a two mil layer of aluminum was

co-cured onto the inner surface of the tube. Morton Thiokol, on the other hand, fabricated the
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tubes using a female mandrel in which a tape layup was cured. These differences in manu-

facturing techniques led to differences in the dimensional repeatability of the tubes. The

Boeing tubes possessed consistent inside diameters from one tube to the next due to the use

of an internal male mandrel. The Morton Thiokol tubes had very consistent outside diameter

owing to the female mandrel used. Because the outside diameter on the Boeing tubes and

the inside diameter on the Morton Thiokol tubes were not controlled by a tool surface, the

variation in the dimensions of the respective diameters varied considerably in some cases.

In addition to the laminated tubes, Morton Thiokol manufactured the unidirectional tubes.

These tubes were made with a 12 ply layup using the same manufacturing technique and

tooling as was used to produce laminated tubes with roughly the same dimensions.

Micrographs of the cross sections of the 0° and laminated tubes were taken. These ap-

pear in Figure 10 and Figure 11. The fiber volume fraction of the 0 ° tubes is significantly

lower than that of the fiat panels; the fibers are visibly much less dense than in the panel. In

addition, the ply boundaries are much more pronounced. The fiber volume fraction for the 0°

tubes was calculated to be 50% using the optical technique. The micrographs of the lami-

nated tube show many of the same characteristics as the 0° tubes: pronounced ply bounda-

ries and lower fiber volume fraction. It should also be noted that the plies toward the center

of the laminate are compacted much less than the plies at the inner and outer surfaces. The

overall fiber volume fraction was determined to be 51%. However, if the fiber volume fraction

is determined within the layer only - not including the resin-rich regions at the interfaces - the

volume fraction increases to 57%. The resin-rich regions at the ply interfaces, if considered

as a separate ply, were determined to be approximately seven percent of the overall thickness

of the laminate. With this knowledge, the "layers" of resin can be Incorporated into the ana-

lytical model as separate layers.

The fiber volume fractions of the unidirectional tubes and the flat panel were also deter-

mined using the matrix digestion method according to the ASTM D-3171 test method. The

volume fractions for the 0°, 45 °, and 90° tubes were determined to be 53%, 52%, and 54.1%

respectively 24, and the fiber volume fraction of the panel was found to be 54.3%. The result
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for the 0° tube compares favorably with the result using the optical technique. The result for

the panel, however, was significantly lower than was determined using the optical technique.

According to the results using the matrix digestion technique, the fiber volume fractions of the

0° tube and the panel are nearly the same, but a comparison the micrographs of the cross

sections indicates that the fiber density in the panel is much higher than the 0° tube. There-

fore the fiber volume fraction of 65% determined using the optical technique will be the value

used in future analysis.

3.4 Test Method

3.4.1 Specimen Preparation

Prior to testing, all specimens were ultrasonically inspected to check for large voids or

flaws. The fiat panels were inspected prior to cutting the test coupons so that voids or flaws

in the panels could be avoided. No detectable flaws were found in any of the panels. The

tubes were inspected to determine their relative condition prior to testing since flaws could

not be avoided due to the limited number of tubes available. The laminated tubes showed

signs of possible voids and delaminations. A typical C-scan of a laminated tube is shown in

Figure 12. The light areas signify an area of a possible delamination or void while the dark

areas denote an area of good bonding. The micrographs presented in the previous section

do not, however, show signs of delaminations. Following the C-scanning procedure the

specimens were placed in a vacuum chamber to remove the moisture absorbed during the

C-scanning procedure.

The off-axis tension coupons were cut on a diamond impregnated saw to nominal di-

mensions of 1/=. x 12" with fiber orientations of 0°, i0 °, 45°, and 90°. Allowing for two inches
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for grips at either end of the specimen, an aspect ratio of 16 was realized. At the center of

each specimen a WK-OO-120WR-350 Micro-Measurements stacked rosette was mounted with

a WK-O6-125AD-350 uniaxial strain gage mounted back-to-back to allow for bending correction.

Three specimens of each fiber orientation were prepared. The off-axis compression speci-

mens were cut to nominal dimensions of 1" x 11/2", and the edges were ground for smoothness

and parallelism. A FRA-2-11 2mm Texas Measurements stacked rosette was mounted at the

center of each specimen, and a FLA-2-11 2mm uniaxial strain gage was mounted back-to-back.

The Iosipescu specimens were cut and ground to the dimensions shown in Figure 13. A

FRA-2-11 2mm stacked rosette was mounted at the center of the test section of each speci-

men.

3.4.2 Test Equipment

Two testing machines were used for the experimental work in this investigation. For the

off-axis tension and compression tests and the Iosipescu tests, a screw driven displacement

controlled UTS Machine was utilized. The tube tests were performed on an Instron biaxial,

servo-hydraulic testing machine. This machine was capable of performing tests In either

displacement or load control; load control was used for the tube tests in this investigation.

Computer controlled data acquisition systems were used with both the UTS and the

Instron test machines. MATPAC2, a software package developed by Hidde, Beuth and

Herakovich 25was used in conjunction with the UTS machine. This system, in addition to ac-

quiring the reading from the strain gages and load cell at three to four times per second,

controlled the machine strain rate for the test. Following the test, MATPAC2 could correct for

strain gage misalignment, initial curvature and bending, transverse sensitivity and actual fiber

orientation. This software package was utilized on an IBM-XT Personal Computer interfaced

with a Data Translation DT2805/5716 A/D D/A board and a Vishay 2100 signal

conditioner/amplifier.
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Datafrom the tests performed on the Instron test machine was acquired on a variation

of the MATPAC2 software system entitled MATPACO. This system is similar to MATPAC2

except that the Instron test machine was controlled independently of MATPACO. MATPACO

was installed on an IBM-AT Personal Computer that was interfaced with an Orion Data Ac-

quisition System signal conditioner. This system acquired data at a rate of two sweeps per

second.

3.4.3 Test Fixtures

3.4.3.1 Off-Axis Tension

The test fixture employed for the off-axis tension tests was a rotating end grip type fixture.

This fixtures reduces the effect of the end constraint that is caused by preventing rotation in

the grips of the fixture, For a detailed description of the test fixture and the test methods see

Pindera and Herakovich 26,

3.4.3.2 Off-Axis Compression

The fixture used for the compression tests employs an end loaded coupon supported by

four circular pins to prevent out-of-plane displacements of the unloaded edges. A more de-

tailed description of the fixture is given by G(_rdal and Starbuck =7and Pindera, et al. z8
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3.4.3.3 iosipescu

The test fixture used for the Iosipescu tests is a modified version of the original model

developed by Walrath and Adams 29.

3.4.3.4 Tube Test Fixture

In order for composite tubes to be loaded in combined tension (or compression) and

torsion, a suitable fixture for introducing the loads was designed. The problem of gripping

composite tubes has previously been examined by Highton and Soden 30 and Toombes,

Swanson, Cairnes 31, and Guess and Haizlip 32. Highton and Soden, working with a filament

wound glass/epoxy tube, applied a tapered reinforcement consisting of additional layers of

glass/epoxy and cast resin. A tapered collar was assembled around the reinforced end and

bolted to flange at the end of the tube. Due to the taper, a radial stress was applied to the tube

when bolted to the flange. This grip was designed for a specimen loaded in axial tension or
i

compression and subjected to internal pressure.

Toombes, Swanson, and Cairnes 31designed a grip similar to that of Highton and Soden

for a tubular specimen to be loaded in axial compression and torsion. This design leaves no

means for loading in axial tension.

Guess and Haizlip 32designed two different end grip configurations. The first consisted

of a two part grip that is adhesively bonded to the inner and outer surfaces of the tube. Be-

cause the adhesive did not provide sufficient maximum load a second design was considered.

The second design consisted of an internal plug and an external split collar. A glass/epoxy

fabric is overwrapped on the outside of the composite tube and cured onto the specimen.

Threads are then machined onto the overwrap to mate with matching threads on the collar.

The Internal plug prevents collapse of the tube when the collar is clamped on the tube. This
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design provides easy assembly and disassembly of the grips on the tube, but it requires that

a glass/epoxy overwrap be applied to the tube and threads machined into the overwrap.

With these designs in mind, some goais for a fixture design were established. First, the

tubes should not require any major modifications ( such as was described by Highton and

Soden and Guess and Haizlip ). Second, the tubes should be easy to change between tests

so that many tubes can be tested in a short period of time. Third, the fixture should not

damage the tube during removal from the fixture so that more than one test can be performed

on the same tube. Finally, the fixture must be capable of introducing axial tension or com-

pression in combination with torsion. From these goals, a set of basic design requirements

was determined.

The primary basis for the design of the fixture was that gripping the tube would be ac-

complished using friction alone. In order to minimize the amount of pressure necessary to

exert on the tube to grip it in the fixture, the load should be introduced on both the inner and

outer surfaces of the tube and the amount of gripping surface should be sufficiently large. The

fixture must allow for variations in the inner and outer diameters of the tube.

The gripping fixture designed for this experimental program with the above criteria in

mind mechanically grips the specimen by applying external pressure. The fixture consists of

three basic components: the plug, the collar, and the base. All parts are made from carbon

steel. The base consists of a circular plate and a protruding rod which can be gripped by the

Instron hydraulic grips. The plug is bolted to the plate portion of the base using three 5/16"

bolts and is then inserted into the end of the specimen. It is made in several different diam-

eters so that a snug fit with the composite tube can be realized with the selection of the proper

size plug. The collar, which consists of four identical parts, is then assembled around the

specimen. It is also bolted to the base. Because both the collar and the plug are bolted to

the base, the applied load is introduced to the specimen at both the inner and outer surfaces.

This permits the gripping pressure to be reduced from what would be required if the load were

introduced through only one surface. A schematic of the fixture is shown in Figure 14.
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The procedure of mounting the grip onto the specimen can be performed while the base

at each end of the specimen is gripped in the Instron's hydraulic grips. This allows for auto-

matic alignment of the tube with the axis of the testing machine and provides a stable platform

in which the bolts in the fixture can be easily torqued without applying any load to the tube.

A preliminary analysis was performed to determine the validity of the design outlined

above. The length of contact between the tube and the collar and the plug was chosen to be

1.75 inches. This corresponds to a contact area of 11.48 square inches on the inner and outer

surfaces. Using the load capacity of the Instron testing machine (20,000 Ib

tension/compression and 10,000 in-lb torsion) as the maximum design load, the maximum

shear stress required at the interface of the grip and the tube was determined to be 982 psi.

A conservative value for the coefficient of static friction was assumed for the steel

grip/composite tube interface to be/_ = 0.20. From this, the magnitude of the radial stress

generated by the grip required to deliver the necessary shear stress was determined to be

4912 psi.

Using the linear elastic portion of the analytical model developed in Chapter 2, the

stresses induced into the tube by the grips alone were calculated. A worst case value of 9000

psi for the gripping pressure was used. In addition to calculating the stresses due to the

pressure exerted by the grips, calculations were made to determine the stresses when the

plug inserted in the tube does not fit perfectly, i.e. there is a gap between the tube and the

plug. It was found that for all but the case of a unidirectional 90 ° tube, the gripping pressure

required to close a gap of 0.010" between the tube and the plug was small compared to that

necessary to grip the specimen under the design loads. The 90 ° specimens, however, require

grip pressures in excess of 40 ksi in order to close the gap due to the high stiffness in the

circumferential direction. Therefore it is imperative the plugs match the inside diameter of the

tubes perfectly ( or as near perfect as possible ) for the 90 ° tubes. Aside from the 90 °

unidirectional case, the stresses due to the gripping pressure were calculated to be well be-

low the ultimate strengths of the material to be used ( P75/934 graphite/epoxy ). Because the

main thrust of this work was not to develop an analytical tool for predicting the complex stress
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states induced by this grip fixture, a more rigorous analytical method for this purpose was not

pursued. The results of the performed analysis were determined to be sufficiently promising

to further pursue this design.

Once preliminary tests on the tubes manufactured by Boeing were initiated, it was noted

that the tubes either slipped out of the grips or fractured in or near the grips. In order to al-

leviate this, the surfaces of the plug and the collar that come into contact with the composite

tubes were grit blasted to provide a rougher surface. This permitted gripping at lower levels

of pressures exerted by the collar on the tube. The fracturing of the tubes in or near the grips

was due to stress concentrations Induced by the grips. An attempt was made to alleviate this

by using a torque wrench to tighten the grips onto the tube in a uniform pattern such that the

collar is tightened evenly around the circumference of the tube.

Several preliminary experiments were performed on the tubes fabricated by Boeing for

the evaluation of the test fixture. Heavily instrumented tubes were tested in pure axial tension

and pure torsion. For both axial and torsional loading, a six inch test section was found to be

sufficient to minimize the end effects in order to obtain a uniform state of deformation midway

between the grips. In pure tension, a maximum axial stress of 30 ksi was achieved with failure

occurring in the fixture. This is 60% of the load for which first ply failure is predicted. Under

pure torsion, failure of the tube occurred at an applied torque of over twice the predicted

torque for first ply failure. These results indicate that this test fixture is suitable for use in

determining the response and failure of tubes under torsional loading, but the testing of tubes

under pure tension is limited to loads well below predicted failure.
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4.0 Experimental Results

4.1 Material Characterization

The presentation of the experimental results will begin with a description of the initial

elastic properties of the material followed by a discussion of the nonlinear properties. Be-

cause the results of the characterization tests yielded consistent results, only representative

test results will be presented in this chapter. A complete set of results is given in Appendix

C. The data shown represents actual test data; no smoothing of the results has been per-

formed.

4.1.1 Tensile Properties

Figure 15 shows the axial response of the four orientations of tensile coupons, and the

Poisson's response for these tests is shown in Figure 16. The elastic properties and failure

stresses obtained from these tests are summarized in Table 7.
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Table 7. Summary of Average Tensile Properties

Type

Panel

Specimen

1-00-01
1-00-02
1-00-03

Average 0°

1-10-01
1-10-02
1-10-03

E, (Msi)

35.25
35.25
35.25

35.25

12.61
13.80
13.80

Vxy

0.340
0.314
0.340

0.331

0.450
0.357
0.366

GI=*(Msi)

-°-

0.625
0.625
0.625

ouut(ksi)

92.96
103.69
100.35

98.76

42.31
43.10
32.73

_UI.T(%)

0.225
0.255
0.256

0.245

0.345
0.325
0.246

Average 10° 13.40 0.391 0.625 39.38 0.305

3-45-01 1.47 0.309 0.555 7.75 0.544
3-45-02 1.47 0.331 0.535 5.91 0.397
3-45-04 1.53 0.295 0.584 7.30 0.482

Average 45° 1.49 0.312 0.558 6.99 0.474

3-90-01 1.04 0.016 -.- 4.05 0.388
3-90-02 1.04 0.016 -.- 3.76 0.364
3-90-03 1.04 0.016 -.- 3.57 0.346

Average 90° 1.04 0.016 -.- 3.80 0.366

Tube 36.38
46.67

1.10
1.17

-°-0-01
0-03
90-02
90-03

* Apparent

t Tube not failed

Data too noisy for accurate measurement
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Figure17andFigure18showa comparisonof experimentalresultsfor Young's modulus

and Poisson's ratio with predictions of transformation theory, equations [4.1] and [4.2].

1 _ 1 cos4_+/ 1 2v12/sin2_cos2_+_1 sin4_ [4.1]Exx(_) Ell G12 E11 i-22

Vxy(_) __.Exx(_)[ ___..t ( sin4_ .1_cos4_) _ / 1.____+ 1E11 E22 Gl19 ) sin2_ cos2_ 1 [4.23

The stress state in a multilayered tube is, in general, three-dimensional, therefore, an

out-of-plane Poisson's ratio, vz3, is required for subsequent experimental/analytical correlation

to be presented in Chapter 5. Because only in-plane properties can be determined from the

off-axis tests, a value for v2_ could not be determined experimentally. A value of 0.49 for v23

was assumed based on Datta et aP s.

4.1.2 Compressive Properties

Figure 19 shows the results for the axial response of the compression tests performed

on the three fiber orientations. The results for the Poisson's response from the compression

tests are shown in Figure 20. A summary of the results for the material properties obtained

from the compression tests is given in Table 8. Figure 21 and Figure 22 show a comparison

of these results with transformation theory (Equations [4.1] and [4.2]).

To insure that the specimens were failing in compression rather than buckling, the 0° arm

of the rosette was plotted with the uniaxial gage that was mounted on the opposite face of the

specimen. Each specimen exhibited similar behavior so only a representative curve will be

presented. The front and back response of a 0° compression specimen is shown in

Figure 23. A sudden drop in the load prior to where the two curves separate indicates that

an initial compressive failure occurs before buckling initiates. Therefore the failure stresses

Experimental Results 79



Ex

(Msi)

35

30

25

20

15

10

5

0

0

[] Experiment

m Transformation Theory

]0 20 30 qo 50 60 70

_) (degrees)

80 90

Figure 17. Comparison of Tensile Young's Modulus with Transformation Theory

Experimental Results 80



V12

O.q

0.3

0.2

0.1

0.0

0

_ [] Experiment i

''''1''''1''''1''''1''''1''''1",,,I,,,,i,=,,

!0 20 30 qO 50 60 70 80 90

_) (degrees)

Figure 18. Comparison of Tensile Poisson's Ratio with Transformation Theory

Experimental Results 81



O"X

(ksi)

0 o

0

0 -1 -2 -.3

ex (%)

Figure 19. Axial Response in Compression Tests

Experimental Results 82



0.10

_y

(%)

0.05

0.00

%%_45

0 -1 -2

_x (%)
-3

Figure 20. Poisson's Response in Compression Tests

Experimental Results 83



Table 8. Summary of Average Compressive Properties

Type

Panel

Specimen

C-00-01
C-00-02
C-00-03

Ex(Msi)

34.48
36.30
36.82

Vxy

0.314
0.373
0.363

GI2*(Msi) auLT(ksi)

-37.27
-49.00
-47.20

_ULT(%)

-0.115
-0.165
-0.160

Average 0 ° 35.87 0.363 -.- -44.49 -0.147

C-45-01 1.49 0,447 0.483 -12.50 -0.664
C-45-02 1.70 0.445 0.600 -18.84 -1.350
C-45-04 1.70 0.573 0.486 -24.84 -1.760

Average 45 o 1.63 0.498 0.523 18,73 1.258

C-90-01 1,20 0.0064 -.- -28.09 -2.584
C-90-02 1.20 0.0072 -.- -27.50 -2.411
C-90-03 1.20 0.0100 -,- -27.50 -2.295

Average 90 ° 1.20 0.0079 -.- -27.70 -2.43

Tube 0-03 45.57 -.- t t
9o-o3 1.06 -'i t -.- t t

* Apparent

t Tube not failed

_t Data too noisy for accurate measurement
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observed in these tests are indeed representative of a compressive failure rather than a

buckling failure.

4.1.3 Shear Properties

The shear modulus can be determined from 10° and 45° off-axis tension, 45° off-axis

compression or the 0° and 90° Iosipescu tests. As described by Pindera et al._, the values

of the initial shear moduli from the different tests must be corrected. The off-axis tension

specimens are subjected to an end constraint effect because the ends of the specimens are

rigidly clamped. The effect of the end constraint can be corrected by employing the Pagano-

Halpin model as described by Pindera and Herakovich =s.

The Iosipescu specimens, although subjected to a nearly pure state of shear stress, have

stress distributions across the test section that are not uniform. Because of this nonuniform-

ity, the apparent values of GI= calculated using the average applied shear stress will not be

the true shear modulus. By carrying out a finite element analysis to determine the actual

distribution of shear stress across the test section, a more accurate value for GI=can be ob-

tained by applying correction factors to the apparent data as pointed out by Pindera et al_.

The results of these tests are shown in Table 9. Figure 24 shows results of the 10° and 45°

off-axis and 0° and 90° Iosipescu tests before correction factors are applied. With the cor-

rection factors incorporated, good agreement between these tests can be seen in Figure 25.

4.1.4 Nonlinear Properties

The constant Bll and the endochronic constants, B_=, B_, n_, n=, ne,and, S=j, are deter-

mined by assuming that for unlaxial states of stress, the nonlinear portion of the strain, sr_L,

can be approximated by a power law_==o
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Table 9. Initial Shear Properties

Test

10o Tension

45° Tension

45° Compression

0° Iosipescu

90° Iosipescu

0° Tube

0.625

0.558

0.523

0.710

0.469

0.553

Correction

o.94ot

t.0o2t

0.847*

1.180"

Glz(Msi)

0.587

0.559

0.523

0.601

0.553

0.553

90° Tube 0.605 0.605

1" Pindera and Herakovich"

Pindera et al_
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NL CiO.lkl. (i 1,2 ..... 6 i not summed ) [4.3]

This implies that the plot of In _" versus In _ can be approximated by a straight line. Taking

the natural logarithm of both sides of Equation [4.3] yields

In ,NL = ,n(Ci_l ki)

= In CI + In _rk_

In sNL = In C_+ kI In a I

( i not summed ) [4.4]

In the Cartesian coordinate system, Equation [4.4] can be represented as

y=mx+b

where

y = In 8NL

x=ln e I

m = k i = slope

b = In C t = y-intercept

Figure 26 shows the fiber direction response in tension and compression. The P75/934

graphite/epoxy exhibits a stiffening response in tension while the response softens in com-

pression. The stiffening behavior in tension is bilinear with an initial modulus of 35.25 Msi as

shown in Table 7, and the final modulus is 43.70 Msi which is a 24% increase in stiffness. To

more accurately model this material, both the stiffening and softening effects will be incorpo-

rated.

The response of the 90° uniaxial tests are shown In Figure 27. In tension, the

_t versus s_ curve is linear to failure. In compression, the curve is linear for a significant

portion of the response. For these reasons, the transverse response will be assumed to be
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linear, therefore, the nonlinear endochronic constants associated with the transverse direction

(B_=, nt, S=_)will be set to zero.

Figure 25 shows the corrected curves for the shear response from the off-axis tension

and compression and the Iosipescu tests. While the 0° and 90° Iosipescu test specimens are

in a nearly pure state of shear, the 45° and 10° off-axis tensile specimens are not. Although

there exist other significant components of stress along material principal directions in espe-

cially the 10° off-axis test, the degree of nonlinearity of each of the curves is nearly the same.

This observation leads to the conclusion that the nonlinearity in the shear component of stress

is uncoupled from the other components of stress. In other words, the presence of

o"1,o-=,and es does not contribute to the nonlinear response in shear at the material level.

From the lamina tests discussed previously in this chapter, and, assuming the material

is transversely isotropic, we conclude that the only nonlinear components of stress are

ol and _s which are uncoupled. Because the nonlinear portion of the strain in the fiber di-

rection is independent of the deformation scale, z, and the uncoupled nature of the nonline-

arities, the only nonzero component of the $_j matrix is the Seecomponent. With B_zand n=

already determined to be zero, the only parameters required are Bll, B_s,nl, n6, and S.o

However, since the nonlinear response in the fiber direction stiffens in tension and softens in

compression, two sets of Bll and n1will be necessary, i.e., for o1> 0

NL ,-,T nlr
61 = I_11_ 1

and for e1< 0

NL= _ BlClioIi.c.

The nonlinear strain in the fiber direction is very well approximated by that of the power

law, Equation [4.3] where C1= B_( or BCl)and kl = nT(or nc) can be determined directly from

a plot of In 8_Lversus In el. nT(nc) is the slope and In BTI( In BCl)is the y intercept.
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Thevalues of ne, B_s, and Se8can be determined from the graph of In s_L versus In (re for

the case of pure shear. For this stress state, the form of the nonlinear strains, s_L is given in

Equation [2.69]

n6

NL B_6($66)"_ G; 6+1 [4.5]
_6 -- n 6 Jr 1

Using Equation [4.3], Equation [4.5] can be represented by the power law approximation

NL ,-. k6
s6 = L'6_r6

where

n6

B_6($66)-'2-

C 6 -
n6Jrl

k6=ns+l

The value of n6 can be determined directly from the slope of the In s_Lversus In _r8 curve.

Because both B_s and $86 must be determined from a pure shear test, they cannot be in-

dependent quantities. Since B_e is simply a multiplicative constant, it will arbitrarily be set

equal to 1. With B_e known, Sse can be determined from the y-intercept of the

In _;NL versus In o-6 curve.

4.2 Summary of Material Properties

With the determination of the endochronic parameters, the P75/934 graphite/epoxy has

been completely characterized in both the linear and nonlinear regions. A summary of the

material properties to be used in the analytical model is shown in Table 10. The coefficients
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of thermal expansion presented in Table 10 were determined by Bowles =4for P75/934 with a

fiber volume fraction of 50%.

The response and failure of the 0° specimens were significantly different in tension and

compression. The 0° coupons exhibited a stiffening response in tension while the behavior in

compression softened. In addition, the ultimate strength in compression, Xc, was less than

50% of the tensile ultimate strength, XT. The initial moduli of the tension and compression

tests differed by only 2% so a common value of 35.25 Msi will be used for both tension and

compression.

The 90° specimens also exhibited a large difference in the failure properties in tension

and compression; the ultimate strength in compression was over seven times the tensile ul-

timate strength. The initial response for both tension and compression was found to be linear.

Although the initial Young's modulus in tension and compression differed by 10%, a common

value of 1.04 Msi will be used for simplicity in the analytical model.

Under complex loading paths, unloading of the stresses can occur due to the sequence

of loading. For an accurate analytical prediction of this kind of behavior, an appropriate

scheme for modeling the unloading of the stresses is required. The two components of stress

which exhibit nonlinear constitutive behavior for P75/934 are the shear component and the

component in the fiber direction which were found to be uncoupled. Because the unloading

response was not part of the material characterization performed in the experimental inves-

tigation, assumptions will be made as to the nature of the two nonlinear components of stress.

Because the nonlinear portion of the strain in the fiber direction was assumed to be in-

dependent of the deformation scale, z, the response is reversible. The reversible behavior

of graphite composites in the fiber direction was verified by Pindera and Herakovich 35using

cyclic tests.

The nonlinearities in the shear component are dissipative in nature. For dissipative re-

sponse, the stresses will be assumed to unload linearly while maintaining a constant nonlin-

ear strain.
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Table 10. Summary of Material Properties

Elastic Properties

Ell = 35.25 Msi

E22 = 1.04 Msi

v12 = 0.331

v23 = 0.49

G12 = 0.570 Msi

Failure Properties

X T = 98.8 ksi

Xc = --44.5 ksi

YT = 3.8 ksi

YC = -27.7 ksi
S = 5.85 ksi

Thermal Properties

=1 = -0.584 x 10-6/°F

_2 = 19.18 x lO-S/°F

Endochronic Parameters

B_1 = 0.7840292x 10 -1=
BCl = 0.2541205x 10 -1_
B_6 = 1.00
S. = 0.1221467x 10 -13

n_ = 1.736261
n_ = 2.056897
ne = 2.859718
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4.3 Laminated Tube Tests

As was mentioned in the previous chapter, the laminated tubes were tested in pure

torsion and in torsion dominated biaxial loading. For the purposes of this investigation, only

the global shear response of the tubes will be presented. For both the analytical predictions

shown in the next chapter and the experimental results, the shear response will be presented

in graphs of ¥4 vs. ?_ where ¥4 is the average applied shear stress

TxrN
Txe -- j

and J is the polar moment of intertia of the tube cross section. The shear strain, 74, is the

strain on the surface of the tube either measured with a strain gage for the experimental re-

sults or calculated using the analytical model.

In the description of the experimental results that follows, the magnitude of the applied

shear stress where the response begins to exhibit nonlinear behavior will be referred to as

the "linear limit _. This point is frequently called the proportional limit in the literature and

textbooks.

4.3.1 Type I Loading

The response of tube LMC08 to pure monotonic negative torsion to failure is shown in

Figure 28. The shear modulus of the tube in this test was G==1.32 Msi. The stress at which

the response deviated from linear response was -6.0 ksi. Failure occurred at -8.88 ksi al-

though cracking was audible at approximately 8 ksi.
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4.3.2 Type !1 Loading

The shear responses for the cyclic torsion tests of tubes LMB02, LMB04, and LMC05 are

shown in Figure 29 through Figure 31 respectively. Each figure contains all loading cycles for

a given tube with each successive loading cycle offset from the previous one by 0.10% strain.

4.3.2.1 Tube LMB02

The results of the cyclic torsion test on tube LMB02 are shown in Figure 29. The shear

modulus, G_, is 1.42 Msi. The linear limit for this tube, as shown in the second and subse-

quent cycles, is 4.0 ksi.

On the final loading cycle, audible cracking in the tube was detected at an applied shear

stress of approximately 9.5 ksi in positive torsion. On the subsequent load up in negative

torsion, total failure of the tube occurred at a stress of 5.3 ksi which is approximately 60% of

the stress attained in negative torsion in the previous load cycle. The unloading response in

the final loading cycle exhibits noticeable hysteresis which may be a result of the cracking

observed in the loading in positive torsion.

4.3.2,2 Tube LMB04

Figure 30 shows the shear response for tube LMB04. For both loading cycles, the shear

modulus for the tube, G=, is 1.24 Msi. The linear limit, as observed in the first loading cycle,

was 4.5 ksi in both positive and negative torsion. Failure occurred at the peak of the second

cycle at an applied shear stress of 8.15 ksi.

In the first loading cycle, the unloading from positive torsion occurredelastically. How-

ever, in negative torsion, the response exhibited a hysteresis in the unloading. This type of
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response could be due to either the onset of damage or a dissipative permanent strain in the

material. On the subsequent loading in positive torsion, failure of the tube occurred at the

peak of the loading cycle.

4.3.2..3 Tube LMC05

The shear response for Type II loading on tube LMC05 is shown in Figure 31. The initial shear

modulus for this tube was the same for positive and negative torsion in these tests:

G_ = 1.43 Msi. The response of this tube is linear up to an applied shear stress of 4.8 ksi at

which point the response began to soften. Failure occurred in this tube in a similar manner

to the failure in tube LMB02; damage initiated in the positive torsion load up followed by failure

in negative torsion at an applied stress of-6.11 ksi which is less than had been achieved in

positive torsion. This test did exceed the stress applied in negative torsion in the previous

load cycle.

4.3.3 Type III Loading

Tube LMC06 was tested using Type III loading; thirteen load cycles were successfully

completed before failure occurred in the fourteenth cycle. The initial shear modulus of 1.27

Msi, as well as the curvature of the response was the same for each increment of load,

therefore only the two final load cycles from each test will be presented to show the response

through the entire loading cycle and the characteristics of failure. The linear limit for both

combined proportional loading and pure torsion was 3.5 ksi.

Figure 32 shows the shear response for the thirteenth and fourteenth load cycles. The

response due to combined proportional loading and unloading, as well as due to pure torsion

and pure tension are indicated on the figure. The initial shear response for both the combined
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proportional loading and the pure torsion are the same. The response due to pure torsion

softens more than the combined proportional loading. Tension applied in addition to the

torsion stiffens the response. Following the application of tension, the applied loads on the

tube are the same as had been applied in proportional loading. The shear strain from the two

loading paths, however, differs by 0.01%. This difference in shear strain indicates that the

response may be exhibiting path dependent behavior.

The response of the final load cycle follows the same path in combined proportional

loading until failure occurred at an applied shear stress of 9.5 ksi in combined proportional

loading.

4.3.4 Type IV Loading

4.3.4.1 Tube LMB01

Tube LMB01 was tested in combined compression and negative torsion using the Type

IV loading. Six load cycles were completed successfully before failure occurred in the seventh

cycle. The shear response from the sixth and seventh load cycles is shown in Figure 33. The

response for the seventh step is offset by 0.10% strain. The initial shear modulus for these

tests was 1.37 Msi, and the linear limit for both pure torsion and combined proportional load-

ing was -3.4 ksi.

The response due to combined proportional loading and unloading are indicated in

Figure 33 as are the responses due to pure torsion and pure compression. The addition of

compression to the negative torsion tends to soften the response by a small amount. This is

in contrast to Type III loading where the pure torsion response was softer than for the com-

bined proportional loading.
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For the final cycle the maximum loads were reached when loading proportionally in

torque and compression. However, when loading in pure torsion, the tube failed at -5.6 ksi

prior to reaching the torque that had been attained previously in combined proportional

loading. The failure of the tube, in this case, is dependent on the loading path.

4.3.4.2 Tube LMC07

Tube LMC07 was tested using the same procedures and load cycles as tube LMB01.

Despite the thermal cycling performed on this tube, seven successful load cycles were per-

formed with failure not occurring until the eighth cycle. Figure 34 shows the results from the

final two load cycles. The initial shear modulus for these tests was 1.30 Msi, and the linear

limit for both pure torsion and combined proportional loading was 4.2 ksi.

The tendency for the pure torsion shear response to be stiffer than the combined loading

as was detected in Tube LMB01 is not evident in this tube. The failure characteristic in this

tube is the same as in LMB01: failure occurs when loading in pure torsion at -6.47 ksi fol-

lowing the combined proportional loading and unloading where the torsion load had reached

a higher level.

4.3.5 Summary

Tests of four different load types were performed on the laminated tubes. A summary

of the results for these seven tests is shown in Table 11.

For each of the seven tests performed on the laminated tubes, the initial shear modulus

fell in the range between 1.42 Msi and 1.27 Msi. The experimentally observed variance in the

modulus does not appear to be the result of any factor such as the effect of axial loading or
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Table 11. Summaryof LaminatedTube Tests

Load Tube G_ Linear zu'Tt yULTt Loading
Type (Msi) Limit (ksi) (%) at

(ksi) Failure_

I LMC08 1,32 '6.0 -8.88 -0.70 Pure
Torsion(-)

II LMB02 1.38 :1:4.0 -5.35 -0.36 Pure
Torsion(-)

II LMB04 1.36 4-4.5 8.15 0.66 Pure
Torsion(÷)

II LMC05 1.42 4-4.8 -6.11 -0.42 Pure
Torsion(,)

III LMC06 1.27 3.5 9.5 0.80 Proportional
(+,+)

,' " I r

IV LMB01 1.37 -3.4 -5,6 -0.41 Pure
Torsion(-)

IV LMC07 t.30 -4.2 -6.47 -0.56 Pure
Torsion(-)

t

$

Corresponds to failure load rather than maximum load

A single (+) or (-) represents the sign of the pure torsion applied.
The double (+,,_) represents the sign of the torque and axial force
in the case of proportional loading.
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differences between positive and negative torsion. This variance will therefore be attributed

to experimental scatter.

Two loading types, II and IV, were performed in which the test was duplicated for both

baseline and thermally cycled tubes. For the Type II loading, two baseline tubes, LMB02 and

LMB04, and one thermally cycled tube, LMC05, were tested. Comparing the test of the

thermally cycled tube, LMC05, with the test on LMB04, it is evident that the thermally cycled

tube progressed further in the loading cycle than the baseline tube. The second baseline tube,

LMB02, successfully completed the load cycle in which both LMB02 and LMC05 failed, and

failed on the subsequent load cycle. For the Type IV loading, the thermally cycled tube,

LMC07, reached a higher applied sheai" stress at failure than the comparable baseline tube,

LMB0t. The results of these tests indicate that the effect of the thermal cycling on the tubes

is not significant.

The failure stress and the linear limit were dependent upon the type of loading. Under

Type I loading, monotonic negative torsion to failure, the tube had a linear limit of-6.0 ksi and

failed at an applied shear stress of-8.88 ksi. Four tubes of TYi_es II and IV loading also failed

in negative torsion, but they each had a loading history prior to failure. Under Type II loading,

tubes LMB02 and LMC05 had linear limits of +5.0 and -I-4.8 ksi, respectively, and failure

stresses of-5.35 and -6.11 ksi. In both cases of Type II loading, stresses of higher magnitude

had been applied in positive torsion prior to failure. The effect of the loading history on these

tubes was to reduce both the linear limits and the ultimate strength in negative torsion.

Tubes tested in Type IV loading, LMB01 and LMC07, which was combined negative

torsion/compression, also exhibited a reduction in the linear limits and the failure stress. Both

tubes tested under this loading type failed under pure negative torsion after loading in com-

bined proportional loading where the applied torsion had reached a higher magnitude. Prior

to the load cycle in which the failure occurred, tube LMB01 had experienced six loading cycles

while tube LMC07 experienced seven complete load cycles. The reduction in the failure stress

appears to be a result of this loading history.
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The linear limits experienced by tubes LMB01 and LMC07 under Type IV loading were

over 30% less than the linear limit observed in tube LMC08 under Type I loading. Because

the linear limits under Type IV loading were the same for each load cycle, the reduction from

the linear limit under Type I loading appears to be the result of the addition of the compressive

load rather than the loading history.

Type III and IV loading were carried out using the same ratios of torsion to axial load, and

the magnitudes of the load increments were the same for each type. The only difference be,

tween the two load types was the sign of the loading. Failure in the Type III loading occurred

at g.5 ksi which is approximately a 50% increase in magnitude of the failure in Type IV loading.

In addition to the magnitude of the stress at failure, the loading at failure differed between the

two types; Type ill failed under combined proportional positive torsion/tension loading while

the Type IV tubes failed under pure negative torsion.

For the load levels tested, only the Type II! loading exhibited a slight path dependent re-

sponse. The path dependent phenomena did not become apparent in Type !1iuntil the mag-

nitudes Of the loads applied had surpassed those that had been altilined under Type IV

loading.

When failure occurred in the tubes under any of the four loading types, a crack along the

length of the tube would propagate along the length. At the free edge, the tube would expe,

rlence an offset of the free edge in the axial direction. This offset is a result of residual

stresses present in the tube due to the fabrication process.
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5.0 Analytical/Experimental Correlation

5.1 Introduction

In this chapter, results from the laminated tube tests presented in Section 4.3 will be

compared with predictions of the analytical model developed in Chapter 2. The material

properties determined for P75/934 graphite/epoxy in Chapter 4 will be corrected for differ-

ences in fiber volume fraction between the fiat panels and the laminated tubes. These cor-

rected properties will then be used as input for the analytical model predictions. The effect

of residual stress on the initial response will be examined as well as the importance of the

consideration of nonlinear material behavior at the ply level on the predictions of the tube

response and failure.
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5.2 Parameters Affecting Initial Response

5.2.1 Material Property Correction

As discussed in the Chapter 3, there is a discrepancy between the fiber volume fraction

of the laminated tubes and the flat panels. The difference in the fiber volume fraction will re-

sult in a difference in material properties. In order to accurately predict the response of the

tube with the analytical model, an accurate set of material properties is required for the tubes.

The causes for the discrepancy between the fiber volume fractions of the panel and the

laminated tube are the lower density of fibers within the layers and the existence of resin-rich

regions separating these layers. For accurate predictions from the analytical model, consid-

eration for both causes will be made. The properties of the layers in the tube will be deter-

mined with the help of a micromechanical model using the known material properties

determined from the fiat panel, and the resin-rich regions between the layer will be charac-

terized for use in the analytical model.

5.2.1.1 Micromechanical Model

The micromechanical model chosen [or the purpose of correcting for the lower fiber vol-

ume fraction is the model developed by Aboudi3e. The fibers are assumed to be square and

arranged in a uniform, square array. A representative cell is chosen that consists of four

subcells; one subcell contains the fiber while the other three contain the matrix, see

Figure 35. By requiring that the continuity of tractions and displacements at the Interfaces of

the subcells be satisfied, the average properties of the lamina can be determined from known

fiber and matrix properties at a given fiber volume fraction.
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Ratherthandeterminingthepropertiesofthecompositefrom known constituent proper-

ties, the properties of the fiber will be determined from known matrix and composite proper-

ties. The lamina properties are already known as determined in the previous chapter. The

properties of the 934 epoxy matrix have been determined by Fox et aP 7. For the fiber volume

fraction of the panels (65%), the fiber properties can be determined. The results of this pro-

cedure are:

EA = 53.90 Msi

ET -- 1.24 Msl

vA = 0.343

vT = 0.440

GA = 1,120 Msi

where the subscript A represents the axial direction and T the transverse direction. The re-

sults given above have been independently verified by Professor Aboudi _.

From the known fiber and matrix properties, the lamina properties can now be calculated

for a fiber volume fraction of the layers in the tube (57%) from the Aboudi Model. The re,

duced lamina properties of the P75/934 graphite/epoxy in the tubes are:

E11 = 30.99 Msi ( -12.1% )

E22 = 1.003 Msi ( -16.4% )

v12 = 0.352 ( +6.3% )

v23 = 0.499 ( + 1.8% )

G12 = 0.515 Msi ( -9.6% )

where the percentage changes from the properties determined from the material character-

ization tests are also given. The nonlinear behavior of the material will be assumed to be

unaffected by the change in fiber volume fraction.
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5.2.1.2 Modeling the Tube Cross SecUon

In Section 3.4, the configuration of the laminated tubes was discussed, It was determined

that the resin-rich regions at the ply Interfaces and Inner and outer surfaces, if considered as

separate plies, accounted for approximately 7% of the overall thickness of the tube.

So that the thickness of each resin layer and graphite/epoxy layer does not have to be

measured from the micrographs for each tube for Incorporation into the analytical model, se-

veral assumptions will be made. Since all seven tubes that were tested were cut from a single

ten foot long tube, the fiber volume fraction of the graphite/epoxy layers and the percentage

of resin layers will be assumed to be the same for each tube. For simplicity, we will assume

that all of the graphite/epoxy layers are the same thickness. The same assumption will be

made for the resin layers,

Using these assumption, the procedure for determining the thickness of each of the plies

is as follows. The overall thickness of the tube is measured in four locations around the cir-

cumference of the tube and averaged. The total thickness of the graphite/epoxy layers is

determined by multiplying the average overall thickness by 0.93; this is in turn divided by the

number of layers (12) to obtain the Individual ply thickness, Similarly, the individual ply

thickness for the resin layers is obtained by multiplying the average overall tube thickness by

0.07 and dividing by the number of resin layers (13).

Figure 36 shows a comparison between the pure cyclic torsion experiment (Type II) on

tube LMB02 and the predictions of the analytical model using uncorrected material prOperties

(as determined in Chapter 4) and corrected properties and cross section in the absence of

residual stress. The initial shear modulus for the experimental curve is 1.38 Msi, and the

shear modulus for the analytical model using corrected and uncorrected material properties

are 1.50 Msi and 1,32 Msi. The correction of the material properties and consideration for the

actual cross section does more accurately predict the initial shear response of the exper-

iment.
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5.2.2 Residual Stress

As pointed out in the previous chapter, there is evidence of residual thermal stresses

being present in the laminated tubes that were tested. For the purpose of predicting the

magnitudes of the residual stresses on the basis of the outlined analytical model, a stress-free

temperature of 350°F will be used. This temperature is the cure temperature for P75/934

graphite/epoxy, and, although it may be a conservative (high) estimate for the stress-free

temperature, a more accurate estimate is presently not available, All of the experiments

pe'rformed on the laminated tubes were carried out at room temperature so the temperature

difference used to calculate the residual Stress is -275°F.

According to linear analysis, the inclusion of residual stresses does not affect the initial

response due to a mechanically applied load. Nonlinear analysis, on the other hand, does

predict a difference between the initial modUluS With residual sti'ess and without residual

stress. Figure 37 shows a comparison between pure cyclic tonsion on tube LMB02 and non-

linear analysis with and without residual stresses. The incorporation of the residual stresses

decreases the initial modulus of the shear response predicted by the analytical model from

1.32 Msi to 1.20 Msi.

The reason for the difference in the initial response predicted by Unear and nonlinear

analyses is the state of stress in the tube due to the temperature change. Figure 38 and

Figure 39 show the distribution of the ol and erastress components through the thickness of

the tube. The solid lines represent the residual state of stress for AT =-275°F, and the dashed

lines represent the state of stress resulting from the subsequent application of the first load

increment in torsion. It is evident that the external -I-15° layers are the most highly stressed

layers with axial stress of-12.5 ksi and shear stresses of-1,7 ksi following the application of

torsion. The result of the presence of residual stresses In these layers is that the nonlinear

region of the material is reached as soon as the torsion is applied.
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5.3 Predictions of the Analj ,cal Model

Nonlinearity in the response of the laminated tUrbeS is evident from the ,results of_the ex-

periments presented in Chapter 4. The prediction of the nonlinear behavior is an Important

objective for the development of the analytical model.

5.3.1 Stress-Strain Response

5.3.1.1 Contributions to Global Nonlinearity

The nonlinear stress-strain response of the tube, prior to the occurrence of _localtzed

failure in the individual layers, is a result of the uncoupled nonlinear respoc_e in the axial

direction - stiffening in tension and sollening in compression - and to shear stress. Because

the nonlinear stress components are uncoupled, the contribution of each nonlinear component

to the global nonlinear shear response can be investigated. Figure 41 and Figure 40 show

the global response of the tube under pure cyclic torsion loading (Type II Ioadlog) plotted with

the separated effects of the axial and shear nonlinearities. Figure 40 shows the response

without residual stress and Figure 41 shows the response with residual stress. Without resi-

dual stresses, the initial moduli of the three curves are identical as demonstrated in the pre-

vious section. In this case, the response in which the only nonlinearity considered is ol

follows nearly the same path as the case for which both _r_and _= nonlinearities are consid-

ered. The response due to the consideration of nonlinearities in o.=only is nearly linear. The

same trends are evident for the case of residual stresses. This indicates that the global

nonlinear response to torsion is due primarily to the nonlinear behavior in the axial direction,
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and, since the response is softening, the nonlinearities are dominated by the nonlinear re-

sponse in compression.

5.3.1.2 Combined Loading Response

Figure 42 shows a comparison of the predicted global stress-strain response to Type III

loading using linear and nonlinear analysis. The linear curve predicts the same shear re-

sponse for combined proportional loading and pure torsion. In other words, the linear model

does not predict coupling between axial loading and shear strain.

The nonlinear analysis predicts the same initial shear modulus for the combined pro-

portional loading and for pure torsional loading which is softer than that predicted using linear

analysis as demonstrated in Section 5.2.2. The predicted response due to combined propor-

tional loading exhibits a higher degree of softening than for pure torsion. In addition, coupling

between axial tension and shear strain is present.

Figure 43 shows the linear and nonlinear analytical predictions of the global stress-strain

response for Type IV loading. As with the predictions for Type III loading, the linear model is

incapable of predicting differences in response due to the different loading paths. For this type

of loading, the nonlinear analysis predicts the response to pure torsional loading to be more

nonlinear than the response due to combined proportional loading. This is in contrast to the

predictions for Type III loading. Coupling between axial loading and shear strain is also pre-

dicted for this type of loading.

5.3.2 Failure

The nonlinearity observed in the global response of the tubes tested can be the result

of material nonlinearities as well as damage evolution in the form of individual ply failures.
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In order to properly evaluate the underlying causes of the observed nonlinear response, it is

necessary to predict the magnitude of the applied loads at which first ply failure occurs. Using

the Tsai-Wu failure criterion described in Chapter 2, a failure envelope for the laminated tubes

has been determined. The failure envelope will describe the state of applied average shear

stress, z_, and average axial stress, _x, at which first ply failure in the laminated tube will

occur.

Figure44 shows the failureenvelopesforthe linearand nonlinearcases where residual

stresseshave notbeen included.These surfaceswere determlnedusingthreepolntsIneach

quadrant. Each surfaceinthisfigureissymmetric about "r_--O.but,due tothe largediffer-

ence between thetensileand compressive ultimate strengthsinthe fiberdlrectlon,thefailure

surface predicts failure for larger magnitudes of combined loading for which the axial com-

ponent is positive than for which the axial component is negative. The linear and nonlinear

failure surfaces predict similar loading state at failure for combined loading states in which

ox is compressive, but significant differences exist between the linear and non,near failure

surfaces for combined loading states with positive ex. In addition to predicting lower failure

loads for positive a_, the curvature of the nonlinear failure surface is concave. Palmer, Maier,

and Drucker3_discussed the issue of concavity in reference to yield surfaces. They found that

for a composite for which one of the constituents is elastic-perfectly plastic and the other is

nonlinearly elastic of the stiffening type, the yield surface in concave. They concluded that the

concavity was a result of the stiffening behavior of the one constituent. Mathematically, the

descriptions of both the yield surfaces and failure surfaces involve quadratic functions of the

stress components whose constant values represent convex surfaces in the appropriate

stress space. Depending upon the definitions of yield and failure that are employed, the yield

and failure surfaces can be coincident. The concavity of the failure surface shown in

Figure 44, then, is due to the stiffening behavior in the fiber direction.

Figure 45 shows the results of adding the effect of residual stresses for the linear and

nonlinear cases. The residual stresses have the effect of reducing the failure loads for all
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proportions of loads, and, interestingly, the concave characteristics disappear in the presence

of residual stresses.

5.4 Correlation of Results

In this section the predictions of the analytical model for Types II, I!1, and IV loading will

be compared with the experimental results. Corrected material properties as determined in

Section 5.2.1 will be used, and the effects of residual stresses will be included.

5.4.1 Type II Loading

A comparison between analysis and experimental results for the test on tube LMB02 has

been shown earlier in this chapter in Figure 37 where the stress-strain response of the third

of four load cycles is shown. As noted previously, the prediction of the initial modulus ( In-

cluding residual stress ) is 1.20 Msi, and the shear modulus determined from the experiment

is 1.38 Msi. In terms of nonlinearity, the experimental results exhibit a slightly larger amount

of softening than is predicted by analysis. The linear limit from the experiment, as shown in

Table 11 is 4.0 ksi; the analytical prediction for the linear limit is 4.6 ksi.

The nonlinear analysis predicts first ply failure in the -150 layers at _r_= 4.17 ksi in posi,

tive torsion. In negative torsion, first ply failure is predicted in the +15 ° layers at _,_ = -4.23

ksi. The onset of the experimentally observed nonlinearity appears to correlate well with the

analytical prediction for first ply failure. Tube LMB02 failed in negative torsion at _r_ = -5.35

ksi subsequent to loading in positive torsion to higher magnitudes of applied shear stress.

This failure stress is also well below that achieved in monotonic negative torsion, -8.88 ksi.

Tube LMC05 exhibited similar characteristics of failure. The reason for failure at an appar-
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ently low applied stress is that in previous load cycles, stress at first ply failure had been ex-

ceeded for both positive and negative torsion. Therefore both the +15 ° layers on the surface

of the tube and the -15° layers on the interior of the laminate have been failed, reducing the

load bearing capability under cyclic loading in, say, negative torsion only.

5.4.2 Type III Loading

Figure 46 shows the comparison between analysis (shown previously in Figure 42) and

the experimental results (shown previously in Figure 32) from the test performed on tube

LMC06 under combined tension/positive torsion. The curves shown represent the results from

the thirteenth of fourteen cycles. The prediction of the initial shear modulus matches the ex-

perimentally determined shear modulus of 1.27 Msi. The linear limit determined from exper-

iment is 3.5 ksi and 5.5 ksi determined from the analysis. The trends predicted by the

analytical model correlate well with the experiment; the pure torsion response exhibits a

higher degree of nonlinearity than the combined loading and coupling between the axial ten-

sion and shear strain does exist. At peak loading of the experiment, a difference in shear

strain of 0.01% was observed between the two loading paths. This path dependence is not

predicted by the analytical model.

Under proportional loading, nonlinear analysis predicts first ply failure at _r_ = 4.46 ksi.

The prediction for the first ply failure under pure torsion is _r_ =4.17 kst. These are indicated

in Figure 46. For both paths the failures are predicted to initiate in the -15° layers in the center

of the laminate. Because the experimentally observed linear limit, as well as the predictions

for first ply failure, fall below the prediction for the linear limit, the onset of nonlinearity may

be the result of first ply failure. Experimentally, the tube failed under combined proportional

loading although the first ply failure is predicted at a lower stress under pure torsion. For

stress levels less than the predicted first ply failure, the agreement between analysis and
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experiment is good. At stresses higher than the predicted first ply failure, the experiment

becomes more nonlinear than is predicted by the analysis.

5.4.3 Type IV Loading

Figure 47 shows a comparison between analysis and the results from the experiment

performed on tube LMB01 under combined compression/negative torsion. The experimental

results are from the sixth of seven load cycles. The initial shear modulus for this test, as

shown in Table 11, is 1.37 Msi while the analysis predicts 1.22 Msi. For this test, the initial

shear modulus is more closely predicted using the linear analysis. This indicates that the

prediction of the initial modulus using nonlinear analysis in the absence of residual stress

would more closely match the experimentally observed shear modulus. The curvature of the

prediction, however, matches that from the experiment. The trends exhibited in the exper-

iment, stiffer response in pure negative torsion which is softened with the application of pure

compression, is predicted by the analytical model. The experimentally observed linear limit

is -3.4 ksi. Using nonlinear analysis, -4.0 ksi is predicted for the linear limit.

First ply failure is predicted at -r= = -3.77 ksi under proportional loading and _r_ = -4.28

ksi under pure torsion. These are indicated in Figure 47. For both the pure torsion and

combined loading, the failure is predicted in the -t-15° layers which are on the outside and

inside surfaces of the tube. The dominant stress in the failure prediction is the cr1 which is

compressive under these loading conditions. For both tubes tested under Type IV loading,

failure of the tube occurred when loading in pure torsion, although the lowest prediction for

first ply failure is for proportional loading.
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5.5 Discussion

In two of the tubes tested under Type II loading, failure occurred in negative torsion at

magnitudes of stress lower that had been reached previously. This apparent premature fail-

ure can be attributed to the ply failures occurring in both the -15° layers and the + 15° layers

due to the reversal of the torsion.

Under Type III loading, there are differences in the nonlinearity of the analytical prediction

and the experimental results. In addition, a difference of 0.01% strain was observed exper-

imentally between the two loading paths, but the analysis did not predict it. These differences

can be explained by an accumulation of damage in the tube. The presence of damage may

enhance the nonlinearity of the material and induce a path dependence on the material re-

sponse. If damage is occurring in the tube, the nonlinear response is no longer a pure ma-

terial response but a combination of material and structural response.

The above hypothesis is supported by the correlation between the predictions of first ply

failure and the experimentally observed initiation of nonlinearity in the global shear response.

Table 12 summarizes the results presented in Section 5.4. Because the initiation of damage

can both the reduce the linear limit and enhance the nonlinearity, the consideration of damage

is necessary for accurate prediction of nonlinear response.

As stated previously, the difference between Type III and Type IV loading was only in the

sign of the loads applied; the proportions of torsion and axial loading were identical. The

applied shear stress at the failure of the tube was significantly less for Type IV than for Type

III. The first ply failure predictions for the different loading types were within 15% of one an-

other, and the mode of failure for both types was compression in the fiber direction. The dif-

ference between the two loading types is in the location of the first ply failure prediction. For

Type III loading, first ply failure is predicted in the -15° layers in the center of the laminate,

and the first ply failure is predicted in the external +15 ° layers for Type IV loading. This result
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Table 12. Comparison Between Linear Limits and First Ply Failure

Load

Type

Tube Linear
Limit

(Experiment)
(ksi)

Linear
Limit

(Analysis)
(ksi)

FPF

(Nonlinear)
(ksi)

FPF

(Linear)
(ksi)

II LMC02 -I-4.0 -!-4.6 4,17 4.16
-4.23 -4.05

III LMC06 3.5 5.5 4.46(prop) 4.48(prop)
4.17(tor) 4,16(tor)

IV LMB01 -3.4 -4,0 -3.77(prop) -3.78(prop)
-4.23(tor) -4.05(tot)
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indicates that a ply failure on the external surface of the type may be more critical to the in-

tegrity of the tube than a failure in an internal layer.

In Section 5.3, it was pointed out that the dominant component of stress in the global

nonlinear response of the tube was the ':1 component. The _rl component of stress also is the

dominant component in the predicted failure of the tubes. Both the softening nonlinearity and

failure in the fiber direction are a result of the compressive properties of the material. The

cyclic pure torsion tests of the Type II experiments presented in Chapter 4 exhibited a non-

linear reversible unloading response up until the load cycle in which failure occurred. The

experiments performed using Type III and Type IV loading also exhibited a reversible behavior

with the successive loading and unloading cycles. These reversible characterisUcs of the

experiments support the assumption that the response in the fiber direction, whether stiffening

in tension or softening in compression, is elastic. Prior to the failure observed in Type II

loading, the stress-strain response exhibited dissipative behavior. In view of the fact that the

first ply failure had been exceeded for both positive and negative torsion, it appears that this

dissipation is the result of damage that had accumulated in the tube.
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6.0 Conclusions and Recommendations

The results of this study indicate that the consideration of material nonlinearities has a

significant effect on the predicted response and failure of tubes made from P75/934

graphite/epoxy with a stacking sequence of 1"15/0/-I- 10/0/-15"1,. The softening response of

the individual plies in the fiber direction under compressive stress was found to be the domi-

nant factor in the observed global nonlinear response of the tubes tested under the loading

conditions employed in this investigation. The softening in shear was found to make very little

contribution to the global nonlinear response. The stiffening response in the fiber direction

due to tension results in the curvature of the failure surface becoming concave in the absence

of residual stress. Nonlinear analysis was found to be capable of qualitatively predicting the

experimentally observed differences in the shear response under pure torsion and combined

proportional loading. The observed coupling between axial loading and shear strain was also

predicted using the nonlinear analysis. However, the correlation between the initiation of

global nonlinear response and the first ply failure predicted by the analytical model indicates

that the observed nonlinear response is due to both material nonlinearity at the ply level and

damage evolution due to successive ply cracking.

The inclusion of residual stresses in the determination of the response and failure was

found to be important. In the case of nonlinear analysis, residual stresses reduce the initial
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shearmodulusofthetube. Themagnitudesof failure loads were also reduced by the residual

stresses, and the concavity of the failure surface mentioned above was eliminated by the

residual stresses.

In addition to residual stresses, another factor found to important in accurately predicting

the initial modulus was proper modeling of the tube cross section. The tubes used in this in-

vestigation were found to contain resin-rich regions at the ply interfaces. These regions ac-

counted for seven percent of the overall wall thickness of the tube. The predictions of the

shear modulus was reduced by ten percent when incorporating the resin "layers" into the

analysis as well as correcting the material properties for the difference in the fiber volume

fraction found between the laminated tubes and the panel.

In order to more accurately predict the shear response, it was found that the tube must

be modeled using the resin "layers". The inclusion of residual stresses was found to give

more accurate predictions of tube response in some cases while, in other cases, it did not.

An offset of the free edge at a longitudinal crack indicated that residual stresses were present

in the tubes tested. An improvement can be made to the analytical prediction if an accurate

determination of the stress free temperature can be made for use in calculating the residual

stresses.

The magnitude of the applied stress at failure was found to be path dependent. This de-

pendence was seen in the tests performed using pure torsion cyclic loading where the tubes

were subjected to increasingly higher magnitudes of loads in positive and negative torsion.

Under this sequence of loading, failure occurred at loads lower than had been applied during

the preceding cycle once a certain stress level was reached. The applied stress at failure,

then, is a function of the previous loading history. It appears that a critical damage envelope

(CDE) may exist beyond which failure becomes a path dependent phenomenon.

Some recommendations for future work in nonlinear analysis of composite tubes are:

Incorporate a damage model into the analytical model to predict accumulation of damage

and its effect on the response of tubes.

Conclusionsand Recommendations 142



* Expand the experimental program to investigate different ratios of torsion and axial loads.

Characterize the unloading response of P75/934 graphite/epoxy to verify the assumptions

made concerning the unloading behavior.

Develop model for predicting the magnitudes of the residual stress from the offset of the

free edge at a longitudinal crack.

= Perform an experimental Investigation similar to that carried out in this research using a

more nonlinear composite system.
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Appendix A. Elements of Local Stiffness Matrices

The radial displacements in the tube were determined by solving a system of equations

that were generated by assembling a set of local stiffness matrices and force vectors that are

determined for each layer by writing an expression for the radial component of the radial

stress at the inside and outside surface of each layer. These expressions are, in matrix form,

w_"

K_,] ,o LF_t+F_+J
_o

where a quantity with a k superscript or subscript represents that quantity for the kth layer, a

"-" superscript represents a quantity at the inside radius of the layer while a "+" superscript

represents the quantity at the outside radius of the layer. The expressions for the individual

terms for a transversely isotropic layer are as follows:

Kkl = Ck2(_ + r2_1) ck 3

rk-l(r_ -- _-1) rk-1
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)b, --2mk.k

m k = cos _k

nk = sin Ck

T
sI = _iAT, i = 1,2,3

For layers that are monoclinic or orthotropic, the expressions for the individual terms of

the local stiffness matrix and force vectors become

Klkl -- (C2k3 + ,{kL;33)rk_l _
_ r2'tk_- r___ r___(_ __,,rk

(C_3- '_k_333)r_'tk
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t k -- rk_ 1

+2rJt k --1,]

(02k3-- _kC3k3) (r2k_'krk-1- rk_k k-1 JJ

G3 (023 + 30_3)r_-1 r_. '- r2,t, - - k-I J --
k--1

(Ck3 -- _'kC3k3) - 2&( 2 -- r,,tk+3r_tk--%,].-_k-.-_ trk rk-1 k k-lJ +
r k -- rk_ 1

3 ¢;3+ -ek (02k3+ 4033)rk-1 - r2'"- _--"1

(Ck3- _kck3). 2,1.,3 _. +4r_" 41)] +___;---_-_- {,rk rk_ 1 --
rk -- rk_ 1

k[ --k
G5 (C23 + 5_3k3)r4_, (ck3 + 2kCk3),(rk_k +Sr,k--1 -- r2_tk+4_

r2_.k_ 2Xk k--1 k--l!-rk-1

(Ck3 -- _'kCk3) - 2_ k 4 r& +Sr,t, -1,]r2k,t__ 2,_ ('rk rk-1 k k--I / +
rk--1

k[ --k --k 5 (ck 3 4- _kCk3) ,l_u k +6r_k_ 1 _ r2_k +5,G6 (023 4- 6033)rk-1 r2k,,tk_ r2_. k _, k k-I k--1 ) --
k--1

--k --k +6r_. k -1,]

(C23- 2kC33) . 2,tk S - rk_' k-1 ,'Jr2_,_ _'t, 1 trk rk_l

k NL k NL --k NL
[Htk3sNL(rk) 4- H23, 2 (rk) + H6386 (rk) 4- 03383 (rk)]
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+ --k[-k (_3+_k_3) r_k-lr_+l, (_,_3-_k_3)
"k --'k--1 k -- k-1

--k[ --k 2_ks)rk_ (ck3 + ._kC3k.___3)(r_,t, +1 ,t,-1 _.k+2.G2 (C23 + _,i. k __ l-21k1 -- ri_ rk_l ) --

(c_3-_kck3) ]_-_ (r_'-_r_'+__#__)-k-1 --

r k -- rk_ 1

k[ --k 4- 3ck3)r_ 1 (_223 4- _.kCk3)G_(c,3 _ _;--_ (#_+_ r_-__+_'-- k--1 #--

k -- k--1

_'- r_'.k1 irk rk-I --

k[--k --k 3 (_k3+ _k_3)G4 (C2._ + 4C33)rk_ 1 _.__._ (_k +3 r,t_-lr_k +4_-- -- k k--1/--

r k -- rk_ 1

--k --k ]
(C23 -- ,tkC33 ) (r_kk --lr_k +4_-_;--#-_, __,- r_#__,)-

G_[(_2_3+ --k 4 (C2_3+ _.kC3k3)(r2,1k+4 J._-Ir,__+5,
-- -- rk k-1 ) --

SC_)rk-_ _ r_
-- k--1

--k --k ]

(C23 -- _'kC33) " _'k --1 _tk+5 4 2#.k .
-- rkrk_l) --Irk rk-1

k -- k--1

Gk (C;3 + 6C33)rk-1 -- r2k,tk_ _,l_.k1 -- rk rk--1 )--

--k --k ]

(C23 -- _'kC33) [r_k --1 r_, +6 5 2,_k-
--_k-- _ _, k k-1 -- rkrk-1) Jr
r k -- rk_ 1

k NL k NL k NL _ NL r[H13¢1 (rk-l) + H23_:2 (rk-1) + H63_6 (rk-1) + C33l:3 ( k-l)]

r2_k _]

" _k--1 _k +1 k--l_ --
(,rk rk_ 1 --

F k- FkeT [_k 3 + _k 3 (C2k3 + J'kck3) (rk_( +lrk_ k 41 23_.-- --k - -- :'-k -- rk-1 ) --
C33 -- C22 r 2_k _ r2_'k --k-1

(ck3--_'kCk3) r_k+lr_.k--l,] _k k. _k k --k k
-- -- (C13o_x -I- _,23_ "t- _33_r Jr

r-_k--r,2_ _ (rl_'tk k k-,lJ k k C36=x#)& Tk -- k-1
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F_+= F'_"_ [v_ +a_ (_ +_) (r_._r_.-_._?)
-_--=_L _'_"-r_'_

I

C33 - C22

"1

(_-- _3)
rk_l) [ + tL,13_(x -t" I.,23(x9 + C33c(r(rk_k--1r_k

+1 2_ k /'_k k . _k k --k k --k k
...... Jr C36_xe)_T

r_._ _.., _-_ J

where

G_- F_aik - 2mknkck66a6k

_2k= (cik3+ FIk)bk -- 2mknkCk6bk
--k --k

4C33 -- C22

The integral force equation is of the form

N

_--_(1)kWk + (DN+I_o + _N+27o = Fx + FFL Jr F;

k=O

where, for transversely isotropic layers,

_o = -- 2=C_2ro

-L;12 )r k, k=1,2 ..... N-t

(I) N = 2=cN2rN
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N

_j--k 2(I)N+ 1 = _ Cll(r k -- r__l)

k=l

N

2,__-_ _ rL_)= C16(r k -_N+2 -5-

N

--k k k--1
FFL = 21r (Hlklak + H21a2 + H61a6 + C12a3) 2

k=l

k k k k k k ( r3- r3 )

--k k k-1
(Hll bl + H21b2 + H61 b6 + C12b3) 3

(H11c 1 Jr H21c 2 Jr H61c6 Jr C12c3) "-
k -- /

(Hlldl + H21d2 + H61d6 + C12d3) 5
x /

(Hlle1 Jr H21e2 Jr H61e6 Jr C12e3) 6

(Hlkl_ Jr Hkl_ Jr Hkl_ Jr Clk2_)( r_ -- riP-1 )]7

N

-kkk-kkltr --r -l/ TFF = 2n" C11=x Jr C12((x8 Jr (Xr) Jr C16°{'xe 2

k=l

and for monoclinic layers,
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(_)O_

(l) k =
--/k-1 Pk

(1 + _k)(rl_ _'" 2_,.-- rk_ 1)

'Fk+l _ _. _k+l_/rl-- _tk+l r1- _tk+t_.2Jtk+l_k+ 1
"12 k+1"13 ;_, k+l -- k Pk+l k

+
(1 _ Vr2A"+l _,,1)-- _k+ltk k+l --

where k=1,2 ..... N-1

_N =

--N 1-- _N __ 1-- _N- _.-(cN2 Jr ,;}.NC12)(rN rN_1 )rr_,

(1 -- _N)(r 2_'N -- r 2_" _N-l/

N

Xf / /-k-k[(:I)N+I = 2_ kl r2k--2 rip-1 +--k --k 2
C33 -- C22

k=l

--k 1 + ,!.k(ck 2 + _.kC13)(rk -- rl+/,) 2

(C_2" =k "" 2_" 1+ _"-- rl+)'"_" Vrl-'t"-- r'-'_" ]}

- _k_13)(.rk rk--1 k k--l)_, k k-1 !

(1 - _k)(rl_ _'" -- _1)

N

d:)N+ 2 = 2= C1_6 r3 --_ rk3-' + --k --I< (C1_ + C_<3) 3
4C33 -- C22

k=l

--k 2+ _k r2+ _k_/..l+ _tk rl+,t_

k-- 1)

-- "_k'-'13;Uk _k-1 -- k _k--l)Uk

(1 - _k)(r_ _"- _-"1)
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N

FFL = -- 21r _k (_k2 + _k3) r2k_r_-I (Clk2+ AkL;,3)_rk -- k-t, _
(1 + ,Ik)(r__k-- r2_k_k-l/

ks1

(_k2- ='k.. 2_l._k1;Ak_.___l+.__.._k2_k_..__..I--A k rl_:(k) ] [ ( r3k_ r3_1 t
XkL;13)(rk rk-, - rk rk-1)_rk -- + gk (_k 2 + 2_k3)

(1 -- ik)(rl_ _lk-- r___) 3

(_k2+-=k..2+_k r2+_k-- l+_k r l+_k__kL;13)_rk -- k-1 )_rk -- k-1 /

(1 + tk)(r 2_lk-- r2_k_k-i/

(_k2 _ ). _k -- '_'+,lk '+,_k2_..,--,lk r_--(k) ] "
k 13)trk.__k--1 - rk.L_ rk-"t...._..J)trk --

(1 -- ).k)(r lAk -- rl_A_kl) +

[ ( ) ° =k "" 3+ J[k r3+ Ak;/rl+ lk rl+ ilk1
k -k 3elk3) r4 -- r_,_, (el2 + Xkt;13)Fk -- k-1 ,,k -- k-, ,

G3 (CI2 + a' (1 + ),k)(rl_Ak r2_k_-- k-t/

XkL'13)trk rk-t --rk rk-_)trk -- k-1 ! k --k k-1

(7 : _.k)(r--'---_Jk-'--_- r__kl---'--_ + G4 (C12 + 4_k3) rl_ --5 r5

(C_2 + -k _( 4+ _k _ r4+ _k_trl+ _k_ r1+ Ak_

(1 + tk)lr 2'tk-- r___)

_, _k Wr2_kr4+ I k r4+ lkr22k _/r 1- _[k _ r 1- _[k_ ]

(c_2- k _ L __-I--_L k-______ . _-1 ,
(1 -- ).lO(r 2'tk -- r2A_kl) +

k[ _--'k ( 6 r ) _kC13)(rk -- k-, ,, k - _
G 5 (C,, + 5ck@) r_ __, (ek2 + --k S+,k rs+,lk,,rl+ 'lk r_+gk)

(1 +,_)(r_ _' -_'"-- rk_l)

_- _ _r_ ___ -r_ _'___trk - _ --k 6C_) k-- k-_
(1 _ Rk)(r2'_k'-- r2_1"---_ + G6 (C12 + 7

--k --k 6+ _[k 6+ _lk.. 1+ _[k 1+ _tk-
(C_2 + IkC_3)(rk - rk_ 1 )_rk -- rk_ 1 )

+
(_k 2 - :k -- 2).ke+'lk r16+_tkr2_k,,r1- _lk-- 'tkL;13)i_rk rk-1 -- k-t/_ k --

(1 -- Rk)(r2_lk r2Ak _•-- k-l/

k k k k k k rk--rk-I
(H11al + H21a2 + Hela 6 + Clk3a3k)

k k k k k k (r:--r4-14(HllC 1 "F H21C 2 -I" HelC e + Ck3ck )

\

k k k k k k _ k rk-- rk-I

(Htlel + H21e2 + H61e6 + C13e3) 6

m

r_.-(k)

) )-- (H_tb_ + H2_b_ + H6_be + C_3b3)

) kkkkkk (r_ -rs )-- (Hlld 1 -F H21d 2 + Held 6 "1-ck3d;) 5 k-1

)--(Hkl_+H;I_+HkI_+Ck3_)( r77rT-1 t}
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N

--k k _k k, _k k rk--
--k k AT--FTF = 2= (Cl1_( x -}- _12oco "1" L,130{r "t- C16_x8 ) 2

k=l

/ -_ ) " - _----k"l+'k rl+)'k'2

Fk_:l --k --k r_k -1 (ck2 "{" tl'kL;lg)trk -- k--1 )

ck3 + C_2 (c12 + c131 "" (1 + _,kl(r2_k- r_k'k--1,

(c 2 1+,,.2,,,,.1-,, J-,.,]}
-- -- _k_..13)Uk /k-- 1 -- r k /k_:1)Uk -- =k. i )

(1 - ,_k)(r_'lk" r___)

The integral torque equation is of the form

N

_-_,?kWk + V_N+l'o + ?N+2/o = Tx + FTNL+ FT
k=O

where, for transversely isotropic layers, the coefficients are

_'0 =
-1 -1 s_ r3)ro(c26 + c36)(q

m

rl + ro 3(rl2 - r(_)

+ C36)(rk _ r3_l)rk --k --k 2(C26 -- C36)rkrk_ 1
-- +

3(r 2 -- r2_1) (rk + rk_ 1)

--k+1 "_k+1. 2 ,,_k+1 ± _k+l_tr3 _ r3)rk(C26 --L-36 )rk+lr k t_26 T 36 )_, k+l

rk+l + rk 3(r2+1 -- r_)

where k= 1,2......N-1

vii N _

--N 3
(C;6 + C36)(rN -- r3-1)rN (c2N6- cN6)r.TN__

3(r_ - r2_1) rN + rN-1
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N

k=l

N

;_ _+_)/_ _-_
k=l

-k 3 r3 -k -k ]t
(C26 + C36)(rk - k-l) (C2s - C36) 3_

3(r2_ r__l ) r-'_-._;,__ 1 (_rk3-1 - rk k-l)
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N

FTL = -- 2_ _k _k e rk -- rk-1 1 --k 3 13 +"3 - (_k' + C3') rk( In rk -- _') -- rib-l( In rk-1 -- _"

ks1

(C;6 --k 3 3 C36)rkrk-1 In( rk ]]+-- _ -- _ rk + rk_13(rk -- rk_l)

p2k[(cke + 2cke) / r4 -- r4-1 /4

Pk[(cE6 + 3cke) / r5 -- r_-I /5

(Eke + ck6)(r3k --r_,_t)2

3(rl_ -- r__,) 32]
(_226--cke) /r2r3 --rkrk_l) +
rk+rk_1 _ k k-1

+ C36)(rk k-I/_,k -

3(rl_ - rib_l)

(C26- 036) 2 4 4 2 k --k
Tk_'-_k_---_ (rkrk-l--rkrk-l) +P4 (C26+4_6) 6

--k --k ]
52(C2e-- C3S) ir2rS _ rkrk_l) +

(_2k8 _--k 3_r3-6 r6 .+ 036)(rk k-1)_rk-- k-t/

3(r_ -- r2_t)

(C_6 + C36)(rk -- rk-1)(rk

3(r2k- r__l)

[ ("/,k --k -- rk-- rk-1
P5 (C2e + 5ck8)

][ ( t26 r6r2 Pek (_k6 + 6_k6) r_ 8r__1_k3C-__1 (rkrk-I-- k k-l) +

--k 3 r3 ,,r7_r7 1) (_k6__336) 'r2r 7 _rkrk_,)]_
(C2k6+ C3e)(rk -- k.lt_ k 7 2

3(r 2_r2 t) rk+rk_l _kk-1 J

( ) (")k k k k k k --k k r_--rl_-I k k k k k k --k k rk--rk-I
(H16al + H26a2 + H6ea6 + C36a3) 3 - (Ht6bl + H26b2+ H66b6+ C36b3) 4

k k k k k k --k k( rl_'-r:-I ) k k k k k k --k k( r:--r:-i )(H16c 1 -F H26c 2 -{- H66c6 + C36c3) -- -- (H16dt + H2sd2+ H66d6+ 036d3) 6

rk -- rk_1
k k k k H66ee +C36e3) 7 8(H1eel+H26e 2+ k k --k k r7--r7-, _(Hk6_+Hk6¢+Hek6¢+ck6_)
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N

Y+{-FT--2= (c_6,_+c26=e+c36=,-+c66=×0) AT-

k=1

[( ; -,)j-
26 "r" 36)[ k-- k-l)

3--_k--_k'k_7) (r21nrk-r2-11nrk-1) rk+rk_ 1 _. rk ]]J

For monoclinic layers, the terms of the Integral torque equation become

_lJo =
(2 - _l)(r_ 't' - r_'h)

(C16 Jr ;L1C16)(1_1+ ZI -- r 2+ 'tl)roA1

(2 + _.l)(r__1- r__')

_[Jk =

--k 2+ )'k r 2+ 'l'k_,_tk(Ck6 + J'kC36)(rk -- k--I J'k (_k 6 _k_3ke)(r_ - _k 2- ,tk.r_ k 2_tk-- --rk--1 ) krk-1
+

(2 Jr _,k)(r_k _l'k -- -'+2_'k " (2 -- Jk)(r_k/l'k -- r__.kl)rk--1 )

(_k+l -- -- {_k+l - =k+l.. 2+ '_k+, r2+ )'k+,)r_kk+,"-'26 - 3+k+ICk+l)(r2k+f k+'-- r_-_+"+''r2'lk+'rj`+,,k+1 k ,'-'me "I-_'k+lU36 )(rk+1 --

(2 -- ,1 _/'l-2)'k+1 r_k)'k+l)&k+l/_,k+t -- (2 + _. _+r_'tk++ _Jk++)k+lJ_ k+l --

where k=1,2 .....N-1

- =N .. 2+ )'N _ 2+ )'N" _"(cN 6 + XNU36)(rN rN_ 1 )r_

(2+ ,_N)(r_'_"- r_@_)
(_2N6-- _N_3N6)(r_- J._ r2-#N)r_

(2 -- _N)(_ _tN-- r2_tNN--lJ_'
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N

3 + _ _
k----1

--k 1+ ,tk 1+ '_k'" 2+ _'k 2+ _k"(C2k6 + _,kC36)(rk -- rk_ 1 )(.rk -- rk_ 1 )

(2+ ,l_)(_'t_-r___)

(_,_k,,._._+_+_.._-_, ]}
- '_k'-'36J_'k"k-1 -- rk rk-1)trk -- _2_ k)

(2 - _k)(r_k _'k -- r 2jtk%k-l/

N

Z{ - r,,:_.,C2_-2C36¢_6+2C_)_JN+2 = 2_ ck 6 4 + --k --k
4C33 - C22

k=l

--k 2+ )'k(_k 6 + _.kCge)(rk _+1_,)2 .=k - =k ..2,_k2+ )-k 2+ ,t_ 2,1, ..2- ,_, rl2-1_k)-- -- (,L'26--/l, kL.ae)(,rk..._rk_.._l -- rk _. rk-l_____)trk-

(2 + ,_k)(rl_ 't' - __'1) (2 -- _.k)(_ _" - I'_'_) ]}
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N

ks1

I )- ,tkU3e)tr k rk-___._L_1-- rk "rk-t._.___l_rk -- + G2k (ck s +
(2 -- ).k)(r_ _k -- rl__kl) 4

_k Wr2+ ,!k r2+ _k"2 (_26 2 _k Wr2,tkr2+ _k 2+ ,tk 2,tk .. 2- _tk 2- _k"(Ok6 "{"Ak 36/_ k -- k-1 I -- _k_"36/_. k k-1 -- rk rk-1)_rk -- rk-1 )

- _k .. 2+A k r2+_lk_/rl+,(k rl+._k_,(C_e + AkU36)_rk -- k-1 J_ k -- k-1 ,

(2 + ).k)(r_ _k -- =2_k, (2 ,tk)(r 2_k r 2_k_rk-t) -- -- k-l/

[ ( / (C26+_kC36)(rk k-, ), k
k --k 3_336)r_-- r_-I --k = 2+ Ak_ r2+ ,Ik_/r3+ ,(k _ r3+l_k)

G3 (C2e + 5 (2 + ,tk)(r 2Ak-- r'_k_ --k-t/

(ck6 -- _k_k36/_'/r2'lkr3+kk-I 'tk -- r3+kAkr2_lkk--ll_wr2-k '{k_ r2- _k) 1

_'_--*_kJt k -- k-l/

[ -- ( -- k-1 ) "l'_kC36)(rk -- k-1 1' k -- k-1 / _
k --k 4C3ks) re r s (_2ks --k 2+ '_k r 2+'lk,,r4+'lk r4+ 'tk'

G4 (C26+ 6 2_k r2Ak(2-F _k)(rk -- k-l)

=k - =k .. 2_k 4+ _k r4+ _lkr2).k.,r 2- ,Ik _ r2- ,Ik_ 1U2S-- Xk_3e)_rkrk--t --k k-l._..__)_k k-I _ _

/
G_

(2 + ,l_)(r__ - r___2_"
i

(Eke . _k ,,r2_krS+ _1k _+ Ak 2'lk'" 2-- _1k r2--_k)-- "k'-'36)_ k k-t -- rk rk-l)_rk --

(2- _)(r__" -_""-- rk_l)

[-- ( ) )'kC36)(rk --rk-t )('rk --rk-I ) --
Gk (C2k +6_33S)r_--r__, (_ks+--k 2+,1k =+ _tk.. e+ 'k S+,tk,

8 (2 + _tk)(r 2_k -- r2_kk--1,_

(_6 " _ "" 2'tk e+,_k _ r_+,lkr2.'lk Wr2--'_k r2--'tk_ 1--Xk_J36)_rk rk-1 k k-l/_ k -- k-1 _ _

(2 _k)(r 2_k r2_k_ J-- -- k-ll

( )k k k k k k r3--r3-1 k k k k Hesbe+C36b3) 4(H16at+H2sa2+Hs6ae+_36a_) 3 _(H16bt+H26b2+ k k --k k r4--r4

(H16c1 + H2ec2 + H66c6 +_k6C3k ) r_ -1 k k k k k k rl_ rek 1-- (Hlsdl + H2ed2 + Heeds + _33sd3k)

( r7 r;' ) ( e re )}(Hleet + H2_e2 + Heeee + C3ee3) 7 8
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N

= + + +
k=l

Fik_T (C_o + C3k6) r3 -- 3 (ck6 + _'kC36)(rk k.1 ,_k -- k-1 ,
--k --k 3
C33 - C22 (2 + _.k)(r_ 'tk-- ___)

(_6" _'" _ '+_-r_+ -__-_)]}
- _,kL,36)trkrl<_I 'tk__kll(r_--'tk

(2 _k)(r 2_k 2_w.-- _ rk_l)
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Appendix B. Least Squares Polynomial

Approximation

For a given layer, the nonlinear strains, s_IL(r) were approximated by a fifth order

polynomial to allow for a solution to the governing differential equation for w(r). For a given

layer and component of strain, the nonlinear strain is approximated by

sNL(r)--_a + br + cr 2 + dr3 + er 4 + fr s

The difference,D, between the true value and the approximation is

D = a + br + cr 2 +dr 3 + er 4 + frs - sNL(r)

For the least squares method, the squares of this difference is summed over all of the data

points within the layer.

m

g= j

j=l
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where m is the total number of data points. To minimize the function g, the derivative of g

with respect to each coemcient is set to zero.

a__g_gag ag ag Og ag = 0
oa = O--b= _c - ad - ae =_

The results of these operations is

m

aa-2 (a + brj + c¢ + dr_ + err + fr]_- s_L) =0

1=1

m

_ _ c¢ _r_o¢+_¢-°1_'_,00-"b-= 2 (a + brl + + + =

j=l

m

a_:ac_<_+_r_+c¢+_r_÷_r_+f¢- 'I"'_¢=0
j=l

m

Og - 2_(a + brj + cr_ +dr_ +er] _+ fr_-sjNL)r_ =0ad
j:l

m

ag _ cr_+dr_ ert fr_ sNL)r]_ 0_-_ - 2 (a + brj + + + - :

j--1
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m

_-_ -- 2 (a + brj + .+ -t-

1=1

This system of equations can be solved for the coefficients a, b, c, d, e, and f.

form, the system of equations is

7,_,T.r_T.rtT,r_T.r_T,';

T.r;'T.,_'T,,_T,,;>"r_'>-',_'
E'_T,'_T,r;T.r_T.r_E,;o

a

b

C

d

e

f

_,_ Lrj

T,°_'r;

In matrix

where each of the summations is from 1 to m.
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Appendix C. Individual Test Results
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